اختبار الفصل الثالث في مادة العلوم الفيزيائية

المـــدة: 02 ساعة

المستوى: ثانية تقني رياضي

التمرين الأول: (08 نقاط)

مراقبة جودة الحليب

يتكون حليب البقر من 87٪ ماء 4.7٪ من اللاكتوز وحوالي 4٪ من الدهون ، كما يحتوي أيضا على الكازيين ، والفيتامينات A و D ، الشوارد المعدنية: مثل الكالسيوم والصوديوم والبوتاسيوم والمغنيسيوم والكلور.....

تطبق في مجال صناعة الألبان العديد من ضوابط جودة الحليب قبل البدء في معالجتها و تسويقها، هذا التمرين مخصص لاثنين من اختبارات الجودة و هما: تحديد حموضة الحليب وايجاد تركيز شوراد الكلور.

• الجزء الأول: هل الحليب طازج؟

الحليب الطازج قليل الحمضية ، لكن اللاكتوز الموجود فيه يخضع الى تحلل كيميائي تحت تأثير البكتيريا ويتحول إلى حمض اللاكتيك $C_3H_6O_3$ ، يستخدم في مجال صناعة الألبان المعيار درجة دورنيك لتحديد حموضة الحليب حيث 1 درجة دورنيك ($1^{\circ}D$) تقابل 0.1 غرام من حمض اللاكتيك لكل لتر من الحليب.

يُعتبر الحليب طازجا اذا كانت درجة حموضته أقل من أو يساوي 18°D.

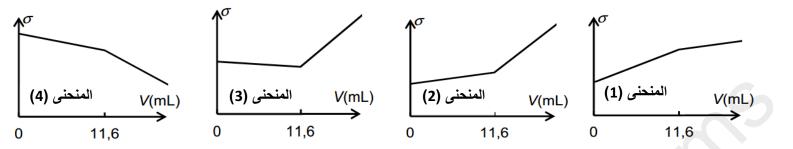
من أجل تحديد حموضة الحليب قام تقني بمخبر مراقبة الجودة بأخذ حجم $V_a=10~mL$ من أجل تحديد حموضة الحليب ووضعها في كأس بيشر

 $(Na_{(aq)}^{+} + HO_{(aq)}^{-})$ و اضاف قطرتين من كاشف فينول فيتالين و عايره باستعمال محلول مائي لهيدروكسيد الصوديوم

 $V_{bE} = 2,1 \ mL$ حجم أجل حجم التكافؤ من أجل حجم $C_b = 0,111 \ mol. \ L^{-1}$ تركيزه المولي

نعتبر ان الحمض الوحيد الموجود في الحليب هو حمض اللاكتيك ${
m C_3H_6O_3}$.

- 1- اعط تعريف الحمض حسب برونشتد.
- 2- اكتب معادلة تفاعل المعايرة ، مبيّنا الثنائيتين (أساس/حمض) المتدخلتين .
 - 3- لماذا نضيف قطرتين فقط من كاشف فينول فيتالين؟
 - 4- اوجد التركيز المولي C_a لحمض اللاكتيك في الحليب المعاير.
- 5- استنتج درجة حموضة الحليب بوحدة دورنيك $M(^{\circ}D)$ ، هل الحليب المعايَر طازج؟ برر جوابك يعطى: $M(C_{3}H_{6}O_{3})=90~g.~mol^{-1}$
 - الجزء الثانى: تحديد تركيز شوارد الكلور في حليب البقر:


التهاب الضرع " La mammite" هو مرض شائع في الأبقار الحلوب ، يُسبب وجود الخلايا الالتهابية والبكتيريا في الحليب مما يؤثر على تركيبه الكيميائي حيث ينخفض تركيز اللاكتوز ، في حين أن تركيز شوارد الكلور يزداد هذا التغيير يجعل الحليب غير صالح للاستهلاك ، ففي الحليب الطازج التركيز الكتلي لشوارد الكلور يكون بين $g.L^{-1}$ و بالنسبة لحليب البقر المصابة فإن هذا التركيز يكون أكبر أو يساوي $g.L^{-1}$.

في مخبر التحاليل قام التقني بأخذ حجم $V_1=20\ mL$ من الحليب منزوع الشوارد (باستثناء شوارد الكلور) ووضعها في كأس بيشر و اضاف $80\ mL$ من الماء المقطر ، و عاير محتوى البيشر باستعمال محلول مائي لنترات الفضة $80\ mL$ بيشر و اضاف $V_E=11,6\ mL$ عن طريق قياس الناقلية فكان الحجم اللازم للحصول على التكافؤ هو $C_2=5 imes 10^{-2}\ mol.\ L^{-1}$ تفاعل المعايرة الحاصل في كأس البيشر هو: $Ag^+_{(aq)}+Cl^-_{(aq)}=AgCl_{(s)}$

1- هل التفاعل الحاصل هو تفاعل أكسدة - إرجاع؟ علّل جو ابك.

2as.ency edocation.com

2- من بين التمثيلات البيانية المقترحة في الأسفل، أيها الذي يمثل تغيرات الناقلية النوعية للمزيج المعاير بدلالة حجم محلول نترات الفضة المسكوب، برّر اختيارك.

 $M(\text{Cl}) = 35,5 \ g.\ mol^{-1}$ يعطى: C_1 يعطى: t ثم التركيز الكتلي t ثم التركيز الكتلي t ثم التهاب الضرع؛ علّل جوابك.

المعطيات: • الناقلية المولية الشاردية عند درجة °25 :

	4
A	
The second	/
	4.40

الشاردة	$Ag^{^{+}}$	Cl ⁻	NO ₃
λ° (mS.m ² .mol ⁻¹)	6,19	7,63	7,14

التمرين الثانى: (06 نقاط)

النسبة الكتلية القصوى المسموح بها للكبريتS في الوقود هي 0.3%، و لكي يتم تحديد نسبة الكبريت في الوقود نأخذ m=100~g منه و نحرقه في ثنائي الاكسجين نحصل على مزيج غازي مكون من SO_2 و SO_2 نذيب كل ثنائي مدين نحصل على مزيج عاري مكون من SO_2 و SO_2 نذيب كل ثنائي مدين نحصل على مزيد عاري مكون من SO_2 و SO_3 نذيب كل ثنائي مدين نحصل على مزيد عاري مكون من من SO_3 و منافع ندين على منافع المحادد المحدد الكري مكون من منافع المحدد الكري مكون من من منافع الكري الكري مكون من منافع الكري الكري

 $V_0=500\ mL$ الناتج في $SO_2=V_0=500\ m$ من الماء فنحصل على محلول

نأخذ حجما $V_1 = 10 \; m$ من المحلول السابق و نعايره بواسطة محلول برمنغنات البوتاسيوم تركيزه المولي

. من هذا الاخير ، $V_E=12.5~mL$ من مذا الاخير ، $C_2=5 imes10^{-3}~mol.\,L^{-1}$

 $2MnO_{4\,(aq)}^{-} + 5SO_{2\,(aq)}^{-} + 2H_{2}O_{(l)} = 2Mn_{(aq)}^{2+} + 5SO_{4\,(aq)}^{2-} + 4H_{(aq)}^{+}$ -1

- اكتب المعادلتين النصفيتين للأكسدة و الإرجاع الموافقتين للتفاعل الحاصل ، ثم استنتج الثنائيتين (Ox/Red) المتدخلتين .

2- عرّف التكافؤ ثم أعط علاقة التركيز C_1 لثنائي اكسيد الكبريت بدلالة V_1 ، V_2 و احسب قيمته.

. ماهي كمية المادة $n(\mathrm{S}O_2)$ لثنائي اكسيد الكبريت المذابة في الحجم $n(\mathrm{S}O_2)$ من الماء

4- اذا علمت انّ كمية المادة للكبريت تساوي كمية المادة لثنائي اكسيد الكبريت ، فاوجد النسبة المئوية الكتلية للكبريت في الوقود، ماذا تستنتج؟ $M(S) = 32 \ g. \ mol^{-1}$

التمرين الثالث: (06 نقاط)

نص التمرين يوجد في الملحق الذي يُعاد مع ورقة الاجابة

انتهى

		जंदर भारत है। जाते का का किस	•	
			(سم :	اللقب و الا
_) يتميز بنكهة الموز و لهذا يستخدم	(E)ل يمثل الكتابة الطوبولوجية لنوع كيميائي	الشكل المقاب
0 	1	ت:	الصناعات الغذائية خاصة الحلويات و المشروباد	بكثرة في ا
			للة التي ينتمي اليها هذا المركب العضوي؟	1- ماهي العائـــــــــــــــــــــــــــــــــــ
	\o' \ \	. <i>IUPAC</i> بىب	يغة نصف المفصلة له، و أعط اسمه النظامي حد	2- أكتب الصب
				التسمية:
		(\pmb{B}) و (\pmb{A})	هذا النوع الكيميائي انطلاقا من تفاعل نوعين آ	3- يتم تحضير
			بسمى حمض الايثانويك و (B) عبارة عن كحوا	حيث (A) ي
	(B)		(B) صيغة نصف المفصلة لكل من (A) و (A)	- أكتب اأ
				VI I - 1
ا الجدول:	العائلة، المطلوب اكمال	ع النوع الكيميائي (B) و من نفس	رسم النظامي حسب IUPAC للمركب (B): التالي يحتوي على مركبات عضوية متماكبة م	
الصنف	التسمية النظامية	الكتابة الطوبولوجية	الصيغة نصف المفصلة	المركب
الصنف	التسمية النظامية	الكتابة الطوبولوجية		
			$CH_3 - CH_2 - CH_2 - CH_2 - CH_2OH$	(C)
	0			(D)
		ОН		
	2،2-ثنائ <i>ي ميثيل</i> بروبان 1-ول			(F)
	بروبان 1-ول			

2as.ency-education.com

ثالثي

(G)

التمرين الأول: (08 نقاط)

• الجزء الأول:

1- تعریف الحمض حسب برونشتد: هو کل فرد کیمیائي قادر علی فقد بروتون H^+ او اکثر.

$$C_3H_6O_{3(aq)}+HO_{(aq)}^-=C_3H_5O_{3(aq)}^-+H_2O_{(l)}$$
 : 2

$$(H_2\, O_{(l)}/HO_{(aq)}^-)$$
 و $(C_3 H_6 O_{3(aq)}/C_3 H_5 O_{3(aq)}^-)$ و $(C_3 H_6 O_{3(aq)}/C_3 H_5 O_{3(aq)}^-)$

3- نضيف قطرتين فقط من فينول فيتالين لأنه ينتمي الى ثنائية (أساس/حمض) ذات لونين مختلفين و عليه فان شكله الحمضي يتفاعل مع شوارد $HO_{(aq)}^{-}$ اثناء المعايرة وبالتالي فاستخدام كمية معتبرة منه يؤدي الى خطأ في حجم التكافؤ.

المعاير: المولي C_a لحمض اللاكتيك في الحليب المعاير: -4

$$C_A imes V_A = C_B imes V_{BE}$$
 اي: $n_{\mathsf{C_3H_6O_3}} = n_{HO}$ عند التكافؤ يكون: $n_{\mathsf{C_3H_6O_3}} = n_{HO}$

$$C_A = \frac{0.111 \times 2.1}{10} = 2.33 \times 10^{-2} mol. L^{-1}$$
 ت ع: $C_A = \frac{C_B \times V_{BE}}{V_A}$

5- استنتاج درجة حموضة الحليب بوحدة دورنيك:

$$m{C_m} = 2{,}33 imes 10^{-2} imes 90 = 2{,}1$$
 $g.L^{-1}$: حسب التركيز الكتاي : لدينا: $m{C_m} = m{C_A} imes m{M}$

اذن : $\begin{cases} 1^{\circ}D \to 0.1g \\ x^{\circ}D \to 2.1g \end{cases}$ أي درجة حموضة الحليب هي : $\mathbf{21}^{\circ}D$ ، بما انّها اكبر من $\begin{cases} 1^{\circ}D \to 0.1g \\ x^{\circ}D \to 2.1g \end{cases}$

• الجزء الثاني:

1- التفاعل الحاصل ليس تفاعل أكسدة - إرجاع لأنه لا يوجد انتقال للإلكترونات.

 $NO_{3(aq)}^{-}$ المسكوبة مع شوارد $Cl_{(aq)}^{-}$ فتتناقص كمية مادة هذه الاخيرة في حين ان شوارد $Ag_{(aq)}^{+}$ المسكوبة مع شوارد المسكوبة لا تتفاعل اي كمية مادتها تزداد ، و بما ان λ_{cl} $> \lambda_{Ag}$ فان التناقص يغلب التزايد و عليه فالناقلية تتناقص.

بعد التكافئ: شوارد $Ag^+_{(aq)}$ و شوارد $NO^-_{3(aq)}$ المسكوبة لا تتفاعل اي كميتها تزداد، فالناقلية تزداد، اذن التمثيل المناسب هو التمثيل (3)

3- ايجاد التركيز المولي c_1 ثم التركيز الكتلي t لشوارد الكلور في الحليب المعاير:

$$C_1 = \frac{C_2 \times V_E}{V_1}$$
 و منه: $n(Cl_{(aq)}^-) = n(Ag_{(aq)}^+)$ و منه: عند التكافؤ يكون : $n(Cl_{(aq)}^-) = n(Ag_{(aq)}^+)$

$$C_1 = \frac{C_2 = 5 \times 10^{-2} \times 11,6}{20} = 2,9 \times 10^{-2} \text{mol. } L^{-1}$$
 : نع

$$t=2.9 imes 10^{-2} imes 35.5 = 1.03 \ g.L^{-1}$$
 : ت ع : $t=C_1 imes M({
m Cl})$: و منه التركيز الكتلي:

.- بما ان: $1.2 \, g.L^{-1} < t < 1.2 \, g.L^{-1}$ فالحليب المعايَر مأخوذ من بقرة غير مصابة بالتهاب الضرع..

التمرين الثاني: (06 نقاط)

1- كتابة المعادلتين النصفيتين للأكسدة و الإرجاع:

$$SO_{2(aq)} + 2H_2O_{(l)} = SO_{4(aq)}^{2-} + 4H_{(aq)}^+ + 2e^-$$
 المعادلة النصفية الإلكترونية للأكسدة:

$$MnO_{4\,(aq)}^{-}+8H_{(aq)}^{+}+5e^{-}=Mn_{(aq)}^{2+}+4H_{2}O_{\,(l)}$$
 - المعادلة النصفية الإلكترونية للإرجاع:

$$(SO_{4(aq)}^{2-}/SO_{2(aq)})$$
 و $(MnO_{4(aq)}^{-}/Mn_{(aq)}^{2+})$ و (Ox/Red) الثنائيتين (Ox/Red)

. تعريف التكافؤ: هو اختفاء كلا المتفاعلين (المؤكسد $MnO_{4\,(aq)}^{-}$ و المرجع $SO_{2\,(aq)}$) اي أنّ المزيج ستكيومتري $MnO_{4\,(aq)}^{-}$

: V_E و V_1 ، C_1 بين بدلالة بين ياكسيد الكبريت الكبريت بدلالة و علاقة التركيز و الثنائي الكسيد الكبريت بدلالة بين الم

$$C_1 = \frac{5C_2.V_E}{2V_1}$$
 : اذن $\frac{C_1 \times V_1}{5} = \frac{C_2.V_E}{2}$ و منه $\frac{n_0(SO_2)}{5} = \frac{n_E(MnO_4^-)}{2}$: عند التكافؤ يكون

$$C_1 = \frac{5 \times 5 \times 10^{-3} \times 12,5}{2 \times 10} = 1,56 \times 10^{-2} mol. L^{-1}$$
: C_1 يماب قيمة التركين C_1 : C_1 يماب قيمة التركين . C_1 : C_1 على التركين .

نثنائي اكسيد الكبريت المذابة في الحجم $n(\mathsf{SO}_2)$ من الماء: $n(\mathsf{SO}_2)$ من الماء:

$$n(\mathrm{S}O_2) = 1,56 \times 10^{-2} \times 0,5 = 7,81 \times 10^{-3} \ mol$$
 : $\sigma(\mathrm{S}O_2) = C_1 \times V_0$ دينا: $\sigma(\mathrm{S}O_2) = 0.56 \times 10^{-2} \times 0.5 \times 10^{-3} \ mol$

4- ايجاد النسبة المئوية الكتلية للكبريت في الوقود:

$$m(S) = 7.81 \times 10^{-3} \times 32 = 0.25 \, g$$
 ثابت الكبريت هي $m(S) = n(S) \times m(S) \times m(S) = n(S) \times m(S) \times m(S) = n(S) \times m(S) = n(S) \times m(S) \times m(S) = n(S) \times m(S) \times m(S) = n(S) \times$

التمرين الثالث: (06 نقاط)

ي الاسم النظامي للمركب (E)حسب IUPAC: إيثانوات 3-ميثيل بوتيل

(B) و (A) من (A) المفصلة لكل من (B)

$$CH_{3} - CH - CH_{2} - CH_{2} - OH$$

$$CH_{3} - CH_{3} - CH_{2} - CH_{2} - OH$$

$$CH_{3} - CH_{3} - CH_{3} - CH_{3} - CH_{3} - CH_{3} - CH_{3}$$

_ الاسم النظامي للمركب (B) : 3- ميثيل بوتان 1- ول

8- اكمال الجدول:

الصنف	التسمية النظامية	الكتابة الطوبولوجية	الصيغة نصف المفصلة	المركب
أولي	بوتان 1-ول	ОН	$CH_3 - CH_2 - CH_2 - CH_2 - CH_2OH$	(C)
ڻان <i>و</i> ي	3-میثیل بوتان 2-ول	₽ ←	$CH_3 - CH - CH - CH_3$ $CH_3 - CH - CH$	(D)
أولي	2،2-ثنائي ميثيل بروبان 1-ول	ОН	$CH_3 \\ CH_3 - C - CH_2 - OH \\ CH_3$	(F)
ثالثي	2-میثیل بوتان 2-ول	ОН	CH_3 CH_3 CH_3 CH_2 CH_3 CH_3	(G)

2as.ency-education.com