الأول للفصل الأول في مادة الفيزياء

السنة الدراسية: 2020/2019 المدة: 120د

المستوى: سنة ثانية تقنى رياضي

ثانوية محمد بوضياف (الدار البيضاء - الجزائر)

4

التمرين الأول:

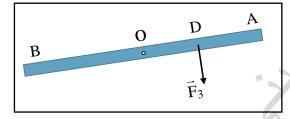
عمود أرجوحة أطفال قابل للدوران من دون احتكاك حول محور (Δ) عمودي عليه و مار من منتصفة (α)، يخضع لقوة ثقل طفلين يجلسان على حافتي الأرجوحة α و α الشكل 1. يزن عمر α ويزن علي α على حافتي الأرجوحة α و α

1- حدد الحافة التي يجلس فيها كل واحد منهما مع التعليل إذا علمت أن OA=OB=3m

 \overrightarrow{OA} يساعد والد عمر الطفلين حتى يصبحان في حالة توازن فيطبق قوة $\overrightarrow{F_3}$ في اتجاه الأرض في النقطة

2- أحسب شدة القوة المطبقة من طرف الوالد

E يتعب والد عمر فينوب عليه والد علي فيطبق قوة شدتها $F_3'=150N$ في اتجاه الأرض في الموضع

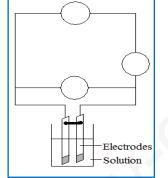

 $^{-}$ على أي بعد $^{-}$ تقع هذه النقطة بالنسبة لمحور الدوران ($^{-}$) حتى تصبح الأرجوحة في حالة توازن.

4- بعد دراستك للعزوم و شروط التوازن،

أ_ في رأيك أين يجب تطبيق هذه القوة $\vec{\mathrm{F}}_3''$ حتى تكون شدتها أقل مايمكن حتى تصبح الأرجوحة في حالة توازن

ب- أحسب شدتها في هذه الحالة

g = 10 N/kg



التمرين الثاني:

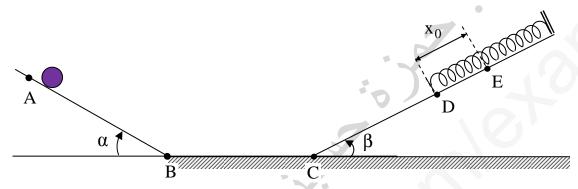
نحضر محلولا من نترات الكالسيوم Ca(NO₃)₂ بتراكيز مختلفة، ثم نقيس ناقلية كل محلول عند الدرجة 25°C.

- 1- أكتب معادلة انحلال هذا المركب في الماء.
- 2- هل يمكن قياس ناقلية هذا المحلول ؟ لماذا ؟
 - أتمم الشكل 1.

الشكل 1.

تجمع النتائج في الجدول أسفله.

المحلول	S_1	S ₂	S ₃	S ₄	S ₅	S ₆
G(mS)	1.00	G_2	3.00	4.00	5.00	6.00
$\sigma (S m^{-1})$	0.10	0.20	0.31	0.40	σ_5	0.60


- ورسم المنحنى $G=f(\sigma)$ ماذا تلاحظ -3
 - 4- أكتب المعادلة الرياضية للمنحنى.
 - 5- أحسب ميل المنحنى
- . أذكر وحدة كل مقدار . σ النوعية σ أذكر وحدة كل مقدار . σ
 - 7 قارن هذه العلاقة مع المعادلة الرياضية للمنحنى . ماذا تلاحظ 9
 - . $S=2cm^2$ ما هو البعد L بين الصفيحتين علما أن سطح مقطع الصفيحة هو: -8
 - . S_5 للمحلول σ_5 للمحلول عية الناقلية النوعية المولية و الناقلية النوعية المحلول σ_5 للمحلول σ_5
 - 10- احسب تركيز المحلول S₅.
- من الماء المقطر للحصول على هذا المحلول ؟ V=500ml الواجب إذابتها في $m_{{
 m Ca}({
 m NO}_3)_2}$ الواجب إذابتها في -11
 - 12- أذكر البروتوكول التجريبي الذي تحضر به هذا المحلول.

 $\lambda_{\text{Ca}^{2+}} = 11.9 \ ms. \ m^2/mol. \ ; \ \lambda_{\text{NO}_3^-} = 7.14 \ ms. \ m^2/mol$

O = 16 g/mol Ca = 40 g/mol; N = 14 g/mol

ندفع بسرعة ابتدائية $v_A=4m/s$ كرية صغيرة كتاتها m=1 Kg من أعلى مستوي مائل أملس يصنع زاوية $v_A=4m/s$ مع المستوي الأفقي . بعد قطعها المسافة m=0.9 m=30 على هذا المستوي تواصل حركتها على مستوي أفقي أملس m=30 أفقي أملس m=30 أفقي أملس m=30 أفقي مائل عن الأفق بزاوية m=30 و تصطدم في الموضع m=30 بنابض مرن مهمل الكتلة و حلقاته غير متلاصقة ثابت مرونته m=30 m=30 فينضغط بمقدار m=30 عندما تتوقف الكرية في الموضع m=30 (الشكل) m=30 m

1- باعتبار الجملة (كرية):

أ- مثل الحصيلة الطاقوية بين A و B .

ب- بتطبيق مبدأ انحفاظ الطاقة . أحسب سرعة الكرية عند الموضع B

ج- استنتج سرعتها من الموضع C.

. CD أوجد المسافة $v_D=3~{
m m/s}$ بسرعة $v_D=3~{
m m/s}$ أوجد المسافة $v_D=3~{
m m/s}$

D نعتبر الجملة (كرية + أرض + نابض) و المستوي الأفقي المار من D مرجعا لحساب الطاقة الكامنة الثقالية :

أ- مثل على الشكل القوى المؤثرة على الكرية (S) بين الموضعين D و E ثم صنف هذه القوى إلى داخلية أو خارجية . ب- مثل الحصيلة الطاقوية بين هذه الموضعين D و E ثم أكتب معادلة انحفاظ الطاقة .

ج- أحسب مقدار الإنضغاط الأعظمي X0 الذي يعانيه النابض عندما تتوقف الكرية في الموضع E

 $h_{E} = 16$ cm هو D المستوي المار من D هو

AB أين يبلغ النابض أقصى انضغاط له ، تعود العربة باتجاه المستوي المائل AB فتتوقف في موضع F من هذا المستوي . بتطبيق مبدأ انحفاظ الطاقة على الجملة (عربة + نابض + أرض) بين E و E أوجد المسافة E . (نرمز لارتفاع الموضع E عن المستوي E عن المستوي E أوجد المسافة E .

و فقكم الله