الجمهورية الجزائرية الديمقراطية الشعبية

ثانوية بن شحم محمد الزياينة

المستوى : 2 ع ت السنة الدراسية : 2017/2016

الاختبار الثاني في مادة العلوم الفيزيائية المدة : 2 ساعة

التمرين الأول:

مرض Hypokalemia هو مرض سببه نقص عنصر البوتاسيوم في الدم ، يؤدي هذا المرض إلى حلل وضيفي في عمل الأجهزة العصبية و الى اضطراب في دقات القلب لاسترجاع هذا النقص بسرعة نستعمل محلول كلور البوتاسيوم عن طريق الحقن ،بحيث يتم حقنه مباشرة عبر الوريد . محلول كلور البوتاسيوم موجود في أمبولات بسعة: 20mL تحتوي كتلة m من (KCl) .

من أجل تحديد هذه الكتلة m نحضر محلول من S_c (KCl) تركيزه C_c =10mmol, L^{-1} و ذلك باذابة m_c من أجل تحديد هذه الكتلة V=50ml من الماء المقطر و نضع المحلول المحصل عليه في دورق و نقيس ناقليته V=50ml السنعمال تجهيز قياس الناقلية .

نضيف للمحلول السابق ml 50 من الماء المقطر و نقيس الناقلية من جديد . نكرر التحربة عدة مرات و ذلك باضافة نفس الكمية من الماء المقطر و ندون النتائج في الجدول ادناه :

S	S_e	S ₂	S ₃	S ₄	S ₅	S_6
V(ml)	50	100	150	200	250	300
C _i (mmol.L ⁻¹)	10					
G(mS)	2,78	1.39	0.925	0.687	0.556	0.461

- 1 احسب الكتلة me اللازمة لتحضير المحلول Se.
 - 2- اكتب معادلة انحلال كلور البوتاسيوم في الماء ِ
- 3- اكمل الجدول السابق مبينا الطريقة المتبعة لحساب التراكيز.
 - 4- عرف الناقلية و ماهي الطرق المستعملة لقياسها ؟
- 5– اعط رسم تخطيطي للتحهيز الذي يسمح لنا بقياس ناقلية هذه المحاليل .
- 7- نقيس بنفس التجهيز و في نفس درجة الحرارة ، ناقلية المحلول الموجود داخل الأمبولة نجد: G_a=293mS .
 أ- هل نستطيع تحديد تركيز (KCl) الموجود داخل الأمبولة مباشرة من البيان ؟ برر اجابتك.
 - ب- اقترح طريقة تمكنك من تحديد التركيز المولي لهذه الأمبولة انطلاقا من البيان.
 - -8 محتوى الامبولة مدد 200مرة .قياس ناقلية المحلول الممدد أعطى : Gd=1,89mS .
 - 1- استنتج قيمة تركيز المحلول الممدد Cd .ثم قيمة تركيز محلول الأمبولة.
 - 2- احسب الكتلة m الموجودة في الأمبولة .
 - M_{Cl} =35,5 g.mol⁻¹ ، M_{K} =39 g.mol⁻¹

2as.ency-education.com

التمرين الثاني:

الجزء $\overline{B_i}$ يبين الشكل 1 أسفله قضيبين مغناطيسيين متعامدين. في النقطة M نمثل كل من $\overline{B_i}$ شعاع الحقل المغناطيسي الناتج عن القضيب 1 و

 $B_2 = 0.032T$ و $B_1 = 0.043T$ و بيث: $B_2 = 0.032T$ و الناتج عن القضيب $B_2 = 0.032T$

M الناتج عن تراكب الحقلين $\overline{B_r}$ في النقطة $\overline{B_r}$ الناتج عن تراكب الحقلين $\overline{B_r}$

$$\overrightarrow{B_r}$$
 احسب قيمة الحقل -3

الأفق $\overline{B_r}$ مع الأفق التي يصنعها $\overline{B_r}$ مع الأفق

5- حدد اتحاه الإبرة المغناطيسية في الموضع M

الشكل 01

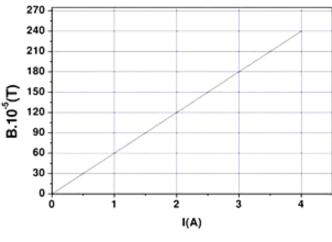
الجزء II:

يوحد في المحبر وشيعة طويلة طولها L =0.05m و عدد لفاتها N بحمهول . من أجل معرفة عدد لفات الوشيعة ، قام التلاميذ بدراسة تجريبية باستعمال جهاز التسلامتر (حهاز قياس شدة الحقل المغناطيسي) لتغيرات شدة الحقل المغناطيسي B في مركز الوشيعة الطويلة السابقة بدلالة شدة التيار I الذي يجتازها و قاموا برسم البيان التالي :

يار ۱ الدي يجتارها و قاموا برسم البيال التايي

1-عرف الوشيعة الطويلة و ماهي مميزاتها ؟

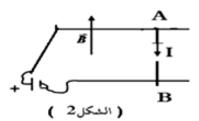
2-أعط العبارة التظرية للحقل المغناطيسي الذي تولده وشيعة


طويلة في مركزها عندما يجتازها تيار I.

3-اكتب معادلة البيان ثم احسب ميله

4-بالمقارنة بين معادلة البيان و العبارة النظرية للحقل المغناطيسي
 الذي تولده الوشيعة في مركزها

- احسب عدد لفات الوشيعة يعطى :


 $\mu_0 = 4\pi . 10^{-7} SI$

التمرين الثالث:

AB سلك من النحاس موضوع على سكتين أفقيتين متوازيتين البعد بينهما مسافة d = 0.2m و بإمكانه الانزلاق عليهما دون احتكاك ، نربط طرفي السكتين بمعدلة و مولد لتيار مستمر أنظر (الشكل -2) . نغمر المجموعة في حقل مغناطيسي منتظم خطوط حقله شاقولية ومتحهة نحو الأعلى وشدته B = 0.8 T .

- 1- صف الظاهرة التي يمكن مشاهدتما .
- 2- مثل القوة المطبقة على السلك في O منتصف القطعة AB .
- 3- أحسب شدة القوة الكهرومغناطيسية F المطبقة على السلك

ليس هناك حدود للعقل يقف عندها، سوى تلك التي اقتنعنا بوجودها There are no limitations to the mind except those we acknowledge

عن أستاذة المادة - بالتوفيق -

2as.ency-education.com