### إعتبار الثلاثي الثاني في مادة العلوم الفيزيائيت

المدة : / 2 ساعة

## التمرين الأول (كان):

نذيب كتلة m من حمض الأزوت  $HNO_3$  النقي في حجم V = 200 mL من الماء المقطر. ننمذج التحول الكيميائي الحادث بمعادلة التفاعل:  $HNO_3 + H_2O \rightarrow H_3O^+ + NO_3^-$ .

قصد دراسة ناقلية هذا المحلول، نركب دارة كهربانية تحتوي على مولد (GBF)، جهاز الفولط متر والذي يشير إلى القيمة U=1 وجهاز الأمبير متر الذي يشير إلى القيمة I=16,856 mA منهما I=16 والبعد بينهما I=16 متوازيتين مساحة كل منهما I=16 والبعد بينهما I=16 متوازيتين مساحة على منهما I=16 منهما I=16 متوازيتين مساحة على منهما I=16 منهما I=16 متوازيتين مساحة على منهما I=16 منهما منهما منهما منهما منهما ونسم منهما ونسم

| (0.75)  | أرسم مخططاً للدارة المستعملة.                           | -1 |
|---------|---------------------------------------------------------|----|
| (20.5)  | أحسب قيمة الناقلية الكهربائية G للمحلول.                | -2 |
| (20.5)  | أحسب قيمة ثابت الخلية K.                                | -3 |
| (00.75) | أحسب الناقلية النوعية م.                                |    |
| (41.5)  | اوجد تركيز مطول حمض الأزوت بـ: mol/m³ ثم بـ: mol/L.     | -5 |
| (01)    | استنتج تركيز الشوارد الموجودة في المحلول الناتج.        | -6 |
| (01)    | أحسب كتلة حمض HNO <sub>3</sub> المذابة في الماء المقطر. | -7 |

#### يعطى:

 $\lambda_{NO_3^-} = 7,14 \text{ mS. m}^2/\text{mol} \cdot \lambda_{H_3O^+} = 35 \text{ mS. m}^2/\text{mol} \cdot M_H = 1 \text{ g/mol} \cdot M_O = 16 \text{ g/mol} \cdot M_N = 14 \text{ g/mol}$ 

## التمرين الثاني (8ن):

لقياس ناقلية 5 محاليل لكبريتات الصوديوم Na2SO4 بتراكيز مختلفة وعند نفس درجة الحرارة، نقوم في كل مرة بتطبيق توتر كهرباني بين لبوسي خلية القياس المغمورين في المحلول، نقيس التوتر U بين طرفي اللبوسين وشدة التيار I المار في الدارة.

نكرر التجربة مع كل محلول بعد غسل الخلية جيدا بالماء المقطر وندون النتائج في الجدول التالي:

| C(mmol/L) | 0.5   | 1     | S <sub>3</sub> | 5       | 7.5   |
|-----------|-------|-------|----------------|---------|-------|
| U(V)      | 0.851 | 0.851 | 0.851          | 0.851 / | 0.851 |
| I(mA)     | 0.106 | 0.212 | 0.425          | 1.063   | 1.595 |
| G(mS)     | 0.125 |       | 7              |         |       |

 1- اعط عبارة الناقلية بدلالة التوتر الكهربائي وشدة التيار ثم أكمل الجدول.

 2- أرسم البيان: G = f(C) بأخذ سلم الرسم: G = f(C) ...

 2- أرسم البيان: G = f(C) بأخذ سلم الرسم: G = f(C) ...

 3- كيف نسمي البيان المتحصل عليه؟

 4- أكتب معادلة انحلال كبريتات الصوديوم في الماء.



5- أعط عبارة الناقلية G بدلالة تركيز المحلول C، ثابت الخلية Κ والناقليات النوعية الشاردية + λ<sub>Na</sub> و -λ<sub>SO2</sub>......

6- بالمطابقة بين العلاقة البيانية (السؤال-2) والعلاقة النظرية (السؤال-5). أوجد قيمة ثابت الخلية K......

.  $\lambda_{SO_4^2-}=16\text{mS.}\,\text{m}^2/\text{mol}$  ،  $\lambda_{Na^+}=5.01\text{mS.}\,\text{m}^2/\text{mol}$  .  $\lambda_{Na^+}=5.01\text{mS.}\,\text{m}^2/\text{mol}$ 

# التمرين الثالث (6ن):

 $B_1 = 4 \text{mT}$  الشكل المقابل قضيبين مغناطيسيين متعمامدين  $A_2$  و  $A_3$  يولددان في النقطة  $B_1 = 4 \text{mT}$  و  $B_2 = \overline{B}$  شدتهما:  $B_1 = 4 \text{mT}$ 



I - يوجد في المخبر وشيعة طويلة طولها 1 = 50cm وعدد لفاتها N مجهول. من أجل معرفة عدد لفاتها، قام التلاميذ بدراسة تجريبية لتغيرات شدة

الحقل المغناطيسي B في مركز الوشيعة بدلالة شدة التيار I الذي يجتازها. عد أكتب العدادة النظرية لشدة الحقل المغناطيسي الذي تولده

- 1- أكتب العبارة النظرية لشدة الحقل المغناطيسي الذي تولده الوشيعة الطويلة في مركز ها عندما يجتاز ها تيار I......(0.5)
- 2- اكتب معادلة البيان واحسب معامل توجيهه. ......(1ن)

 $\mu_0 = 4\pi \times 10^{-7} T. \, m/A$  عدد لفات الوشیعة......(1ن) يعظى: نفاذية الفراغ  $\mu_0 = 4\pi \times 10^{-7} T. \, m/A$ 



B= f(I)

بالتوفيق / اساتذة المادة