
ثاتوية سي يوسف بولخروف ـ الشفة 2021 / 2022 / 2022

المستوى: 2 ع ت المدة: 2 سا

اختبار الفصل الأول في مادة العلوم الفيزيائية

التمرين الأول: (8 نقاط)

نترك كرة فولاذية كتلتها (m=800g) تسقط سقوطا حرا (أي تحت تأثير ثقلها) دون سرعة ابتدائية من الموضع (A) الذي يقع على ارتفاع $(a=30^\circ)$ ، بعد قطعها مسافة على ارتفاع $(a=30^\circ)$ ، بعد قطعها مسافة $(a=30^\circ)$ على هذا المستوى ، تصعد الكرة الفولاذية مسارا دائريا أملسا نصف قطره $(a=30^\circ)$

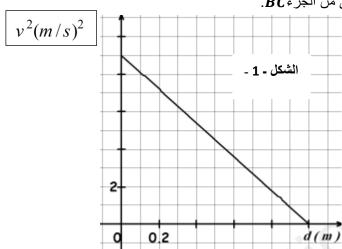
- (B) و (A) بين الموضعين (A) و (B)
- (B) و (B) ، ثم احسب سرعة الكرة عند الموضع الموضع (B) و (B) ، ثم احسب سرعة الكرة عند الموضع
 - : $V_C=5m/s$ بسرعة (C) بسر الكرة إلى الموضع
 - أ / مثل القوى المطبقة على الكرة أثناء حركتها وفق المستوي المائل BC .
 - . (C) با الحصيلة الطاقوية للجملة (كرة + أرض) أثناء الانتقال من (B) إلى
 - . f الحتكاك مبدأ انحفاظ الطاقة احسب شدة قوة الاحتكاك f
 - . BC حتى تكون حركة الكرة مستقيمة منتظمة وفق الجزء f حتى تكون حركة الكرة مستقيمة منتظمة و
 - 4 ـ اكتب معادلة انحفاظ طاقة الجملة (كرة + أرض) بين الموضعين $(m{C})$ و $(m{D})$.
- . $V_D=4,14m/s$ علما أن الكرة تصل إلى الموضع (D) بسرعة جود نصف قطر المسار الدائري R، علما أن الكرة تصل إلى الموضع

التمرين الثاني: (12 نقطة)

نثبت على طاولة أفقية ، في نقطة ($m{o}$) نابضا مرنا حلقاته غير متلاصقة ، ثابت مرونته $m{K}$ و نضغط نهايته الأخرى من الموضع ($m{B}$) إلى الموضع ($m{m}=m{0},1kg$ مقدار التشوه (الانضغاط) $m{m}=m{0},1kg$ ، نضع امام النهاية المضغوطة جسما كتلته $m{m}=m{0},1kg$ ، ثم نحرر النهاية المضغوطة فينطلق الجسم من النقطة ($m{A}$) إلى ($m{B}$) ليكمل حركته عل سطح الطاولة إلى النقطة ($m{C}$) أين يتوقف و تنعدم سرعته .

 $(O) \qquad (A) \qquad (B) \qquad (C)$

الجزء الأول:


. (B) و (A) باعتبار الجملة (جسم + نابض) ، مثل الحصيلة الطاقوية لهذه الجملة بين النقطتين (A) و

. اعتمادا على مبدأ انحفاظ الطاقة ، أوجد عبارة v_R^2 بدلالة m كتلة الجسم ، x_0 مقدار التشوه و K ثابت مرونة النابض .

3 ـ قمنا بتصوير حركة الجسم على الطاولة ، ثم عالجنا الغيديو ببرمجية خاصة ، دراسة حركة الجسم في الجزء الخشن BC من الطاولة

مكنتنا من الحصول على البيان الممثل في الشكل -1 - حيث d المسافة المقطوعة من طرف الجسم و v سرعته في الموضع المرافق .

أ / اكتب معادلة انحفاظ طاقة الجسم بين الموضعين (B) و موضع كيفي من الجزء BC.

 $v^2=v_B^2-rac{2f}{m}$. d : ب' اثبت أن

حيث v هي سرعة الجسم في موضع كيفي و d المسافة المقطوعة

عند بلوغه هذا الموضع.

ت / اكتب معادلة البيان الممثل في الشكل ـ 1 ـ

ث / اعتمادا على السؤالين (3 ـ ب) و (3 ـ ت) أجد ما يلي :

. (B) سرعة الجسم عند الموضع v_B - 1

. ثابت مرونة النابض K - 2

f ـ 3 شدة قوة الاحتكاك .

BCج استنتج المسافة

4 - في رأيك كيف يكون شكل البيان في حالة الجزء BC أملس ؟ مثله على ورقة الإجابة مع التعليل .

الجزء الثاني:

1 - نعيد نفس التجربة السابقة لكن الحركة تكون شاقولية نحو الأعلى

. جد اقصى ارتفاع $oldsymbol{h}$ يمكن للجسم ان يبلغه

 $oldsymbol{g} = oldsymbol{10N/Kg}$: المعطيات

(A)

(C)

(B)

(O)