
السنة الدراسية 2022/2021	الأقسام: 2 ع ت	امتحان الفصل الثاني في مادة العلوم	ثانوية يوسف بولخروف - الشفة
المدة: ساعتان		الفيزيائية	

التمرين الأول: (4 نقاط)

المنحنى البياني المقابل تغيرات التحويل الحراري Qالمقدم لعينة Qمن معدن بدلالة كتلتها m لرفع درجة حرارتها من 30° 0 إلى m

أ / اكتب عبارة التحويل الحراري المقدم لهذه العينة .

ب /اكتب معادلة البيان الممثل في الشكل المقابل .

ج / استنتج السعة الحرارية الكتلية لهذا المعدن ثم تعرف عليه اعتمادا على الجدول أدناه.

عند الدرجة c و ندخلها في m=2kg عند الدرجة ع $00^{\circ}c$ و 0وعاء يحتوي على 0.5L من الماء عند الدرجة $0^{\circ}c$ ، نقيس درجة الحرارة للجملة (قطعة نحاس+ الماء) عند التوازن فنجدها 100°c.

أ/ أحسب التحويل الحراري الذي يحدث لقطعة النحاس ، ما هي إشارته ؟ علل . ب / ما هو التحويل الحراري الذي يكتسبه الماء باعتبار الجملة (نحاس + ماء) معزولة حراريا .

ج / ما هو حجم الماء الذي يبقى في حالته السائلة ؟

 $C_{eau} = 4185 J/Kg.$ °C \cdot $\rho_{cl} = 1 kg/L \cdot L_v = 2261 kJ/kg$ يعطى:

المعدن	Fe	Cu	Pb
السعة الحرارية الكتلية	460	387	130
(J/kg.°C)			

التمرين الثاني:

1 - نحضر محلولا مائيا لحمض النتريك $_{0}$ HNO انطلاقا من محلول تجاري $_{0}$ تركيزه المولى $_{0}$ يحمل المعلومات التالية : $P = 100\% \cdot d = 1,51$

. $oldsymbol{d}$ و $oldsymbol{P}$: $oldsymbol{P}$ و

ب / تأكد أن التركيز المولي $C_0 \simeq 24 mol/L$.

 ho_0 - للتأكد من قيمة ho_0 نأخذ بواسطة ماصة عيارية حجما $ho_0=2.5$ و نضعه في حوجلة عيارية سعتها ho_0 نكمل بالماء المقطر ho_0 C_a إلى غاية خط العيار لنحصل على المحلول الحمضى ($H_3O^+;NO_3^-$) تركيزه المولى

أ / ماذا نسمى هذه العملية ، عرفها .

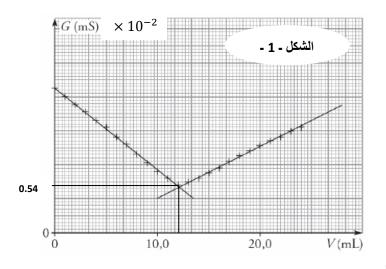
ب/ما هو الهدف منها؟

 $\mathbf{v}_a = 20$ من المحلول الحمضي المحضر سابقا و نضيف إليه قطرات من كاشف أزرق البروموتيمول ، ثم نعايره $\mathbf{v}_a = 20$ بواسطة محلول هيدروكسيد البوتاسيوم $(K^+; OH^-)$ تركيزه المولي $C_b = 0.\,1mol/L$ عن طريق قياس الناقلية الكهربائية للمزيج التفاعلي في البيشر فنتحصل على البيان في الشكل - 1 -

أ / ذكر بالبروتوكول التجريبي لعملية المعايرة ، مع ذكر الأدوات اللازمة .

ب / اكتب معادلة التفاعل بين محلولحمض النتريك و محلول هيدروكسيد البوتاسيوم مبينا أنه تفاعل حمض ـ أساس

ت / حدد الثنائيتين (أساس / حمض) الداخلتين في التفاعل .


ث / انجز جدول تقدم التفاعل.

ج / استنتج تركيز المحلول الحمضى المعاير c_{lpha} ، ثم تأكد من قيمة التركيز c_{lpha} المحسوبة سابقا .

ح / هل يتغيّر لون كاشف أزرق البروموتيمول أثناء المعايرة ؟ علل مبينا لون الكاشف في كل مرحلة من عملية المعايرة

خ / ما هي الافراد الكيميائية الموجودة في البيشر عند التكافؤ ؟ احسب تراكيزها .

K=1cm د / حدد بیانیا ناقلیة المزیج التفاعلی عند نقطة التكافؤ ، ثم تأكد من قیمتها حسابیا علما أن ثابت خلیة جهاز قیاس الناقلیة

المعطيات:

 $\mathsf{M}_H = 1 \mathrm{g/mol} \cdot \mathsf{M}_N = 14 \mathrm{g/mol} \cdot M_O = 16 \mathrm{g/mol} \cdot \lambda_{K^+} = 7.35 mS.\, m^2/mol \cdot \ \lambda_{No_3^-} = 7.14 mS.\, m^2/mol$

لونه في المحلول الأساسي	لونه في المحلول الحمضي	اللون الأصلي لأزرق البروموتيمول
أزرق	أصفر	أخضر

التمرين الثالث: (4 نقاط)

1 - اكمل المعادلات النصفية التالية ، ثم بين إن كانت معادلة نصفية للأكسدة أو الارجاع:

$$I_2 \dots \dots I^- \dots I^-$$

$$Cr_2O_7^{-2}$$
 = Cr^{+3} / ψ

$$Mg \dots = Mg^{+2} / \varepsilon$$

$$Fe^{+2}$$
 = Fe^{+3} / 2

2 - حدد الثنائية (OX /Red) في المعادلات النصفية التالية:

$$Zn = Zn^{+2} + 2e^- /$$

$$2S_2O_3^{-2} = S_4O_6^{-2} + 2e^- / \hookrightarrow$$

$$2H^+ + 2e^- = H_2 / \varepsilon$$

$$S_2O_3^{-2} + H_2O = 2SO_2 + 2H^+ + 4e^- / 2$$

