القسم: الثانية تقني رياضي هك	الفرض الثالث في مادة الهندسة	ثانوية : حي الشيخ عامر بريان	
المدة : ساعتان	الكهربائية	السنة الدراسية : 2014 / 2015	
نظاء آل أفرن المرتادة			

نظام الي لفرر الصناديق

دفتر الشروط المبسط:

الهدف : المطلوب من هذا النظام هو فرز الصناديق المتشابهة شكلا و المختلفة وزنا ، وتجميعها في مجموعات قصد الاستعمال

التشغيل: النظام يحتوى على 4 أشغولات رئيسية:

الأشعولة الأولى: الإتيان بالصناديق

الأشغولة الثانية : فرز الصناديق إلى خفيفة ذات وزن 1kg وثقيلة ذات وزن 2kg .

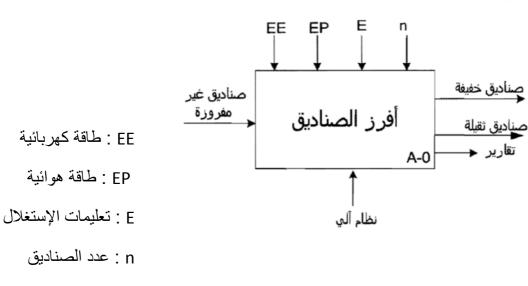
الأشغولة الثالثة: إخلاء الصندوق الثقيل

الأشغولة الرابعة: إخلاء الصندوق الخفيف

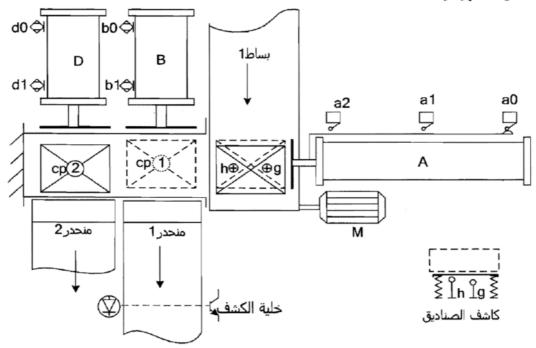
الإتيان بالصناديق يتم بفضل البساط الذي يديره المحرك M ، متحكم فيه بواسطة ملامس كهرومغناطيسي KM. الكشف عن الصناديق يكون بواسطة الملتقط h إذا كان الصندوق خفيف، و بو إسطة الملتقطين h و g إذا كان الصندوق ثقيل.

وصف أشغولة الفرز:

- إذا ضغط على الملتقط h لوحده ، تخرج ساق الرافعة A (تحكم كهر و هوائي بموزع 2/5 ثنائي الإستقرار dA) لوضع الصندوق بجانب المنحدر 2 وفي حالة الضغط على g و h معا ، تخرج ساق الرافعة ٨ لوضع الصندوق بجانب المنحدر 1.
 - في كلتا الحالتين تعود ساق الرافعة إلى وضعها الأصلى .


أشغولتي الإخلاء: تتم عملية إخلاء الصناديق الثقيلة نحو المنحدر 1 بواسطة الدفعة B (تحكم كهرو هوائي بموزع 2/4 ثنائي الإستقرار dB) و الصناديق الخفيفة نحو المنحدر بواسطة 2 الدافعة C (تحكم كهرو هوائي بموزع 2/4 ثنائي الإستقرار dC).

ملاحظة ·


- توجد خلية كهروضوئية عند كل منحدر ، تلتقط مرور الصناديق قصد تعبئتها على شكل مجموعات ذات 10 صناديق ، بحيث عند اكتمال العدد المطلوب ، ينطلق منبه صوتى لمدة زمنية قدر ها t = 20 ms

الصفحة 1/ 3

II- الوظيفة الشاملة A-0:

III - المناولة الهيكلية:

العمل المطلوب:

1- التحليل الوظيفي:

س1: أكمل النشاط البياني AO لهذا النظام على ورقة الإجابة

س2: ما هو دور الملتقطات g و h ?

 a_2 و a_3 و الملتقطات a_3 و a_3

س4: أكمل جدول الأجهزة المستعملة

2- دارة الخلية الكهروضوئية:

س5: أشرح مبدأ تشغيل الدارة مستعينا بالجدول

الموجود على ورقة الإجابة

س6: أحسب قيمة المقاومة R_B التي تسمح بتشبع

الترانزستور Tr₂ علما أن:

 $\beta = 100 \cdot V_{BE \, SAT} = 0.6 \, V \cdot Vcc = 12 V$

 $I_c = 1$ mA تيار قدح المرحل

 Tr_1 و الترانزستور D_1 ما هو دور كل من الثنائى D_1

 D_2 ما هو دور الثنائي

3- دارة المنبه الصوتي:

R_B=10 K Ω ; R_C=56 Ω ; Ru = 8 Ω

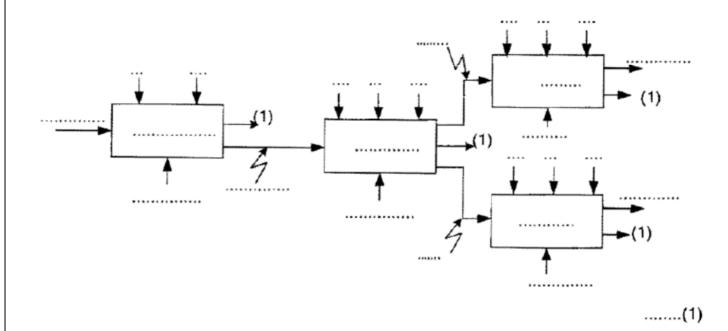
 $V_{BE}\!=0.6V$, $R_{E}\!=\!100~\Omega$; $\beta\!=\!50$

 h_{11} =152 Ω ; h_{12} =0 ; h_{22} =0 ; h_{21} =50

س9: أرسم التصميم المكافئ في الحالة الديناميكية

س10: أحسب ما يلى:

- التضخيم في التوتر


- مقاومة الدخول

- مقاومة الخروج

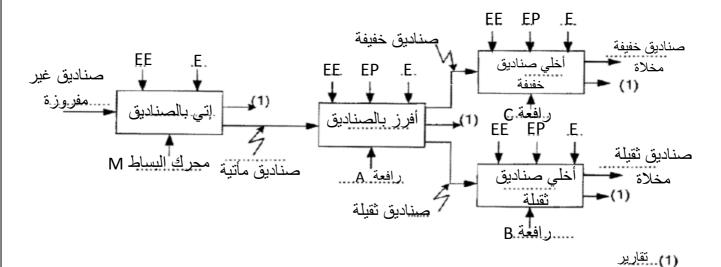
الصفحة 2 / 3

ورقة الإجابة

ج1: مخطط النشاط A0

ج 4: جدول الأجهزة المستعملة:

الملتقطات	المفندات المتصدرة	المنفذات	
			الإتيان بالصناديق
			فرز الصناديق
			إخلاء الصناديق الثقيلة
			إخلاء الصناديق الخفيفة


ج5 : مبدأ تشغيل الخلية الكهروضوئية

حالة مماس المرحل	وشيعة المرحل	حالة Tr ₂	حالة Tr ₁	
				غياب الصندوق
				حضور الصندوق

الصفحة 3 /3	

القسم: الثانية تقني رياضي هك	تصحيح الفرض الثالث في مادة	ثانوية: حي الشيخ عامر بريان
المدة : ساعتان	الهندسة الكهربائية	السنة الدراسية : 2014 / 2015

ج1: مخطط النشاط AO

ج2: دور الملتقطات g و h :الملتقط h يكشف عن الصناديق الخفيفة ، g و h تكشف عن الصناديق الثقبلة

 a_2 و a_1 دور الملتقطات : 3

 a_1 : ملتقط وضعية يكشف عن نهاية خروج ساق الرافعة A لوضع الصندوق الثقيل بجانب المنحدر 1 a_2 : ملتقط وضعية يكشف عن نهاية خروج ساق الرافعة A لوضع الصندوق الخفيف بجانب المنحدر 2 a_2 : جدول الأجهزة المستعملة:

الملتقطات	المفندات المتصدرة	المنفذات	
الملتقطات g و h	ملامس كهرومغناطيسي kM	محرك كهربائي M	الإتيان بالصناديق
a_2 و a_1 و a_2 و الملتقطات	dA: بموزع 2/5 ثنائي الإستقرار	الرافعة A	فرز الصناديق
الملتقطات b ₀ و b ₁ و cp ₁	dB: بموزع 2/4 ثنائي الإستقرار	الرافعة B	إخلاء الصناديق الثقيلة
d_1 الملتقطات cp_2 و cp_2	dD: بموزع 2/4 ثنائي الإستقرار	الرافعة D	إخلاء الصناديق الخفيفة

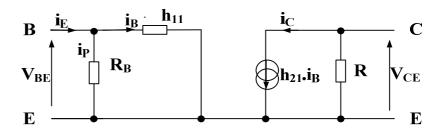
ج5 : مبدأ تشغيل الخلية الكهروضوئية

حالة مماس المرحل	وشيعة المرحل	حالة Tr ₂	حالة Tr ₁	
مفتوح	غير ممغنطة	محصور	مشبع	غياب الصندوق
مغلق	ممغنطة	مشبع	محصور	حضور الصندوق

 $\overline{Tr_2}$ التي تسمح بتشبع التر انزستور $\overline{R_B}$ التي تسمح بتشبع التر انزستور

$$V_{\text{CC}} = R_{\text{B}}.I_{\text{B}} + V_{\text{BE}} \implies R_{\text{B}} = \frac{V_{\text{CC}} - V_{\text{BE}}}{I_{\text{B}}} = \frac{12 - 0.6}{0.02} = 570 \text{K}\Omega$$

 $I_{B} = \frac{I_{C}}{\beta} = \frac{2}{100} = 0.02 mA$


ج7: دور كل من الثنائي D_1 و الترانزستور Tr_1

باعث ضوئى : D_1

مستقبل ضوئي : Tr_1

ج8: دور الثنائي D2 حماية الترانزيستور من القوة الكهربائية العكسية الناتج عن الوشيعة.

ج9: ضع الترسيمة المكافئة في الحالة الديناميكية

ج10: أحسب ما يلى:

$$R = \frac{R_C \cdot R_U}{R_C + R_U} = \frac{8*56}{64} = 7\Omega$$

$$A_V = \frac{V_{BE}}{V_{CE}} = \left| -\frac{h_{21.R}}{h_{11}} \right| = \frac{7*50}{152} = 2,3$$

- مقاومة الدخول

$$R_E = \frac{V_{BE}}{I_E} = \frac{R_B \cdot h_{11}}{R_B + h_{11}} = \frac{10*0,152}{10,152} = 0,1497K\Omega$$

- مقاومة الخروج

$$R_S = R_C = 56\Omega$$