Prof : Ferahtia Mahfoud Bac-Blanc2021-Lyceé Touiri

الجمهورية الجزائرية الديمقراطية الشعبية

مديرية التربية لولاية المسيلة ثانوية: المجاهد طويري محمد دورة ماى 2021 وزارة التربية الوطنية إمتحان بكالوريا تجربية للتعليم الثانوي الشعبة: آداب وفلسفة + لغات أجنبية

المدة: 02 سا و 30 د

إختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين الأتيين: الموضوع الأول

التمرين الأول: (05 نقاط)

- ما العدد 2^n على 5. المرس حسب قيم العدد الطبيعي n بواقي القسمة الإقليدية للعدد 2^n
 - عين باقي القسمة الإقليدية للعدد 1442²⁰²¹ على 5.
 - $-2^{4n} \equiv 1$ [5] : بين أنه من أجل كل عدد طبيعي (3
 - $-2^{412} + 2^{8n+2} 5 \equiv 0$ بين أنه من أجل كل عدد طبيعي n فإن: (4)
- 5) عين العدد الطبيعي n بحيث يكون العدد: $2^{4n} + 2^n + 2^n + 2^n$ مضاغف للعدد (5

التمرين الثاني: (06 نقاط)

 $u_5 imes u_7 = 4096$ و $u_3 = 8$ حيث: $u_3 = 8$ و $u_5 imes u_7 = 4096$ و $u_5 imes u_7 = 4096$

- 1) احسب u₆ والأساس q.
- u_n بدلالة u_n اكتب عبارة الحد العام u_n بدلالة (2
 - (u_n) ادرس اتجاه تغیر المتتالیة (3
- $S_n = u_1 + u_2 + u_3 + \cdots + u_n$:حيث S_n بدلالة S_n بدلالة (4
 - $S_n = 2044$: علما أن: $S_n = 2044$ عين العدد الطبيعي $S_n = 2044$ علما أن: $S_n = 2044$

Prof : Ferahtia Mahfoud Bac-Blanc2021-Lyceé Touiri

التمرين الثالث: (09 نقاط)

 $f(x)=2x^3-3x^2+1$ يلي: \mathbb{R} للعرفة على f المعرفة على المعرفة على المعرفة على المعامد ومتجانس f(x)=0 (f(x)=0) المنحنى البياني الممثل للدالة f(x)=0 المنحنى البياني الممثل للدالة f(x)=0 المنحنى البياني الممثل للدالة f(x)=0

- 2) ادرس اتجاه تغير الدالة f، ثم شكل جدول تغيراتها.
- (3) بين أن المنحنى (C_f) يقبل نقطة انعطاف يطلب تعيين احداثيياها،
- • $f(x) = (x-1)(2x^2 x 1)$: \mathbb{R} من x من أجل كل x من أجل (4
- 5) عين احداثيات نقط تقاطع المنحنى (C_f) مع حاملي محوري الإحداثيات.
- $x_0 = \frac{1}{2}$ اكتب معادلة للمماس (T) للمنحنى المنحنى النقطة ذات الفاصلة (6
 - 7) أنشئ (T) و (C_f) في نفس المعلم السابق.
- f(x) = m وسيط حقيقي. ناقش بيانيا وحسب قيم m عدد حلول المعادلة: m (8

إنتهى الموضوع الأول

Prof : Ferahtia Mahfoud Bac-Blanc2021-Lyceé Touiri

الموضوع الثاني

التمرين الأول: (05 نقاط)

 $a \equiv 3[4]$ و $a \equiv 2[4]$ و عددان طبیعیان حیث: $a \equiv 3[4]$

- ? 4 هل العدد $2a + 5b^3$ على (1
- باقي قسمة العدد a^2-2b^3 على 4.
 - $a \equiv -1[4]$ تحقق أن: (3)
- ملى هـ،4 واقي قسمة العدد $a^{2021} imes a^{1442}$ على 4.
 - $a^{2021} + a^{1442} \equiv 0$ [4] :نتج أن (5

التمرين الثاني: (06 نقاط)

 $u_{12}=19$ و $u_{3}=1$ حيث: $u_{3}=1$ وأساسها u_{1} وأساسها $u_{3}=1$ و $u_{3}=1$

- u_0 عين الأساس r والحد الأول u_0 لهذه المتتالية.
- u_{18} اكتب عبارة الحد العام u_n بدلالة u_n ثم احسب u_{18}
 - $u_n = 2021$ عين العدد الطبيعي n حتى يكون: (3
- $S_n = u_0 + u_1 + u_2 + \dots + U_n$:احسب بدلالة n المجموع (4
 - $A = 31 + 33 + 35 + \dots + 2021$ (5) استنتج المجموع:

التمرين الثالث: (09 نقاط)

 $f(x) = \frac{2x+2}{x+2}$ بعتبر الدالة f للمتغير الحقيقي x المعرفة على $f(x) = -\infty$; $-2[\cup]-2$; $+\infty[$ على x المعرفة على x المعرفة x نعتبر الدالة x المعرفة على x المعرفة على المعرفة x نعتبر المثل للدالة x في المستوي المنسوب إلى معلم متعامد ومتجانس x (x) المنحنى البياني الممثل للدالة x في المستوي المنسوب إلى معلم متعامد ومتجانس x

- $f(x) = 2 \frac{2}{x+2} : -2$ بين أنه من أجل كل عدد حقيقي x يختلف عن (1
- $\lim_{x \to -2} f(x)$ ، $\lim_{x \to -2} f(x)$ ، $\lim_{x \to +\infty} f(x)$ ، $\lim_{x \to -\infty} f(x)$ احسب النهایات التالیة: (2
- ب) استنتج أن المنحنى (C_f) يقبل مستقيمين مقاربين يطلب تعيين معادلة لكل منهما.

- 3) عين الدالة المشتقة f' للدالة f وادرس اشارتها،
- 4) استنتج اتجاه تغير الدالة f ، ثم شكل جدول تغيراتها على مجموعة تعريفها.
- 5) عين احداثيات نقط تقاطع المنحنى (C_f) مع حاملي محوري الإحداثيات.
 - 0) اكتب معادلة للمماس (T) للمنحنى (C_f) في النقطة ذات الفاصلة (C_f)
 - (C_f) و (T) أنشئ (T)
- f(x) = m :ناقش بيانيا تبعا لقيم الوسيط الحقيقي m، عدد حلول المعادلة: (8

إنتهى المـوضـوع الثانيُ

الزمن	جوان 2021 اكتوبر 2020
(أنا)	+
أنا	الباك والباك

🎾 الارادة الصادقة للإنسان... تشبه قوة خفية تسير خلف ظهره، وتدفعه دفعا للأمام على طريق النجاح... ونتنامى مع الوقت حتى تمنعه من التوقف أو التراجع.

😊 بالتوفيق والنجاح في شهادة بكالوريا 2021. 🏵 أتمنى لكم حياة جامعية أفضل ... 🗲

تصحيح إمتحان بكالوريا تجربية للتعليم الثانوي الشعبة: آداب وفلسفة + لغات أجنبية

ثانوية: المجاهد طويري محمد دورة ماي 2021

تصحيح الموضوع الأول

حل التمرين الأول <mark>05 ن</mark>

دراسة حسب قيم العدد الطبيعي n بواقي القسمة الإقليدية للعدد 2^n على 5:

 $2^0 \equiv 1$ من أجل n = 0 نجد: n = 0

 $2^1 \equiv 2[5]$ نجد: n = 1 من أجل \triangleleft

 $2^2 \equiv 4[5]$ نجد: n=2 من أجل q=2

 $2^3 \equiv 3[5]$ غبد: n = 3 من أجل

 $2^4 \equiv 1$ ای این n=4 من أجل n=4

نلخص بواقي قسمة 2ⁿ على 5 في الجدول التالي:

п	4 <i>k</i>	4k + 1	4k + 2	4k + 3	$k \in \mathbb{N}$
$2^n \equiv$	1	2	4	3	[5]

ومنه:

riangle بواقي قسمة 2^{4k} على 5 هيriangle

بواقي قسمة 2^{4k+1} على 5 هي 2.

بواقي قسمة 2^{4k+2} على 5 هي 4.

⊳ بواقي قسمة 2^{4k+3} على 5 هي 3.

2 تعيين باقي القسمة الإقليدية للعدد 1442²⁰²¹ على 5: <u>1</u>

 $1442^{2021} \equiv 2^{2 \times 1010 + 1}$ ونكتب: $1442^{2021} \equiv 2^{2021}$ ونكتب: $1442^{2021} \equiv 2^{2021}$ ونكتب: $1442^{2021} \equiv 2^{2021}$ ولدينا: $1442^{2021} \equiv 2^{3k+1} \equiv 2^{2k+1}$ حسب خاصية التعدي ينتج: $1442^{2021} \equiv 2^{2k+1} \equiv 2^{2k+1}$ ومنه باقي القسمة الإقليدية للعدد 1442^{2021} على 5 هو: 2.

 $2^{4n} \equiv 1$ [5] : البيين أنه من أجل كل عدد طبيعي $2^{4n} \equiv 1$

 $2^{4n} \equiv 1$ [5] ومنه: $2^4 \equiv 1$ وبإستعمال خاصية الرفع إلى قوى n نجد: n ومنه: n ومنه: n ومنه: n

ن 1 $2^{412} + 2^{8n+2} - 5 \equiv 0$ قإن: [5] عدد طبيعي n فإن: [5] عدد طبيعي [5]

$$2^{412} + 2^{8n+2} - 5 \equiv 2^{4 \times 103} + 2^{2(4n+1)} - 5[5]$$

$$2^{412} + 2^{8n+2} - 5 \equiv 2^{4 \times 103} + (2^{4n+1})^2 - 5[5]$$

$$2^{412} + 2^{8n+2} - 5 \equiv 1 + (2)^2 - 5[5]$$

$$2^{412} + 2^{8n+2} - 5 \equiv 1 + 4 - 5[5]$$

$$2^{412} + 2^{8n+2} - 5 \equiv 0[5]$$

حل التمـرين الثاني <mark>06 ن</mark>

لدينا:

• (1) حساب ي: 1

 $u_5 \times u_7 = 4096 \cdots$ لدينا:

 $u_5 \times u_7 = (u_5)^2 \cdots$ وحسب خاصية الوسط الهندسي في الممتالية الهندسة نجد: $u_5 = -\sqrt{4096} = -64$ أو $u_6 = \sqrt{4096} = 64$ أي: $u_6 = \sqrt{4096} = 64$ أن حدود المتتالية $(u_6)^2 = 4096$ موجبة فإن: $u_6 = 64$.

• حساب الأساس r: 1 ن

 $q^3=8$ لدينا: $q^3=rac{32}{2}$ ومنه $q^3=8$ أي $q^3=8$ ومنه $q^3=8$ لدينا: $q^3=8$ فإن: $q^3=8$ ومنه $q^3=8$ ومنه $q^3=8$

• (2) عساب u₁:

 $u_1=2$. $u_1=\frac{8}{4}$. $u_1=\frac{8}{4}$. $u_1=u_1 imes 2$. $u_2=u_1 imes q^{3-1}$. لدينا

عبارة حد العام u_n بدلالة n:

 $u_n = u_1 imes q^{n-1}$ عطى عبارة الحد العام لمتتالية هندسية حدها الأول u_1 بالعلاقة التالية: $u_n = u_1 imes q^{n-1}$ بعد التعويض نجد: $u_n = 2 imes 2^{n-1}$ أي $u_n = 2^{n-1+1}$ ومنه $u_n = 2^n$

 u_n اتجاه تغير المتتالية u_n اتجاه تغير المتتالية

بما أن $u_n=2>1$ و $u_1=2>1$ فإن المتتالية u_n متزايدة تماما.

حساب المجموع S_n بدلالة 1 ن 4

 $S_n = u_1 + u_2 + \dots + u_n = u_1 \times \left(\frac{q^n - 1}{q - 1}\right) = 2 \times \left(\frac{2^n - 1}{2 - 1}\right) = 2 \times (2^n - 1)$ k = 1

 $S_n = 2044$:غيث العدد الطبيعي العدد (29 = 512) علما أن: 310 علما أن

$$2^n=512$$
 معناه: $S_n=2044$ معناه: $S_n=2044$ لدينا: $S_n=2044$ معناه: $S_n=2044$ بالمطابقة مع $S_n=2044$

حل التمرين الثالث 09 ن

$$\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} x^3 = +\infty \quad \lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} x^3 = -\infty$$

2 دراسة إتجاه تغير الدالة *f*:

حساب الدالة المشتقة f' للدالة f'

 $f'(x) = 6x^2 - 6x$:الدالة f قابلة للإشتقاق على $\mathbb R$ ودالتها المشتقة f

دراسة إشارة f'(x) دراسة إشارة f'(x)

$$6x(x-1) = 0$$
 نگافئ $6x^2 - 6x = 0$ تگافئ $f'(x) = 0$

$$x = 1$$
 أو $x = 0$ تكافئ $x = 0$ أو $x = 0$ تكافئ $x = 0$ أو

x	$-\infty$		0		1		+∞
f'(x)		+	Ó	_	Ó	+	

إذن من أجل: 0.5 ن

$$]-\infty;0]$$
 ومنه الدالة f متزايدة تماما على مجال $f'(x)>0$; $x\in]-\infty;0]$ م

$$[0;1]$$
 ومنه الدالة f متناقصة تماما على مجال $f'(x) < 0$; $x \in [0;1]$ م

$$[1;+\infty[$$
 ومنه الدالة f متزايدة تماماً على مجال $f'(x)>0$; $x\in [1;+\infty[$

جدول تغيرات الدالة f

х	$-\infty$ 0 1 $+\infty$
f'(x)	+ 0 - 0 +
f(x)	$\begin{array}{c c} & & & & +\infty \\ \hline & & & & \\ \hline & & & & \\ \hline & & & & \\ \end{array}$

تبيين أن المنحنى (C_f) يقبل نقطة انعطاف يطلب تعيين احداثيياها: (C_f)

نحسب الدالة المشتقة الثانية f'' للدالة f وندرس إشارتها:

f''(x) = 12x - 6: الدالة f''(x) = 12x - 6 قابلة للإشتقاق على \mathbb{R} ودالتها المشتقة

 $x = \frac{1}{2}$ لدينا: 12x = 6 نكافئ f''(x) = 0 نكافئ f''(x) = 0

x	$-\infty$		$\frac{1}{2}$		+∞
f''(x)		_	Ó	+	

إذن الدالة المشقة الثانية f'' تنعدم من أجل $x=rac{1}{2}$ مغيرة إشارتها. $w\left(rac{1}{2};rac{1}{2}
ight)$ قبل نقطة إنعطاف w حيث: $w\left(rac{1}{2};f\left(rac{1}{2}
ight)
ight)$ أي رومنه المنحنى $w\left(rac{1}{2};f\left(rac{1}{2}
ight)
ight)$ عقبل نقطة إنعطاف w حيث:

ن 0.5 : $f(x) = (x-1)(2x^2-x-1)$: \mathbb{R} من أجل كل x من الدينا:

 $(x-1)(2x^2-x-1) = 2x^3 - x^2 - x - 2x^2 + x + 1 = 2x^3 - 3x^2 + 1 = f(x)$

- تعيين احداثيات نقط تقاطع المنحنى (C_f) مع حاملي محوري الإحداثيات:
 - مع محور الفواصل: <mark>0.5 ن + 0.5 ن</mark>

 $(2x^2-x-1)=0$ معناه y=0 معناه معناه y=0 معناه

ولدينا: $\Delta = (-1)^2 - 4(2)(-1) = 9$ نحسب المميز Δ فنجد: $(2x^2 - x - 1) = 0$ ومنه للمعادلة حلان: $x_2 = \frac{1 - \sqrt{9}}{2 \times 2} = \frac{-2}{4} = -\frac{1}{2}$ أو $x_1 = \frac{1 + \sqrt{9}}{2 \times 2} = \frac{4}{4} = 1$ وبالتالي المنحنى A(1;0) يقطع محور الفواصل في النقطتين A(1;0) و عريث: A(1;0) وبالتالي المنحنى المنحنى وبالتالي المنحنى المنحنى

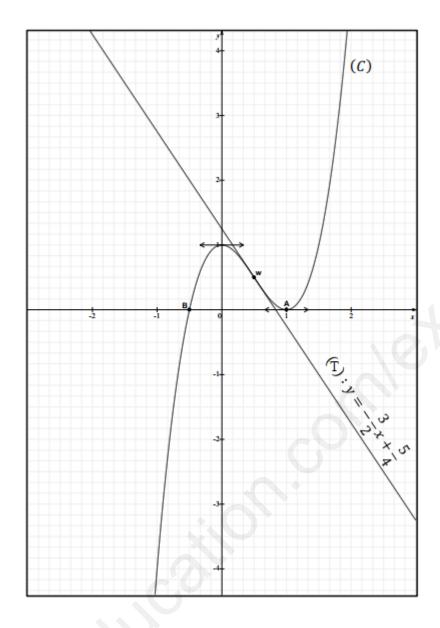
• مع محور التراتيب: معم محور التراتيب

 $f(0)=2(0)^3-3(0)^2+1)=1$ ومنه: $f(0)=2(0)^3-3(0)^2+1$ ومناه $f(0)=2(0)^3-3(0)^2+1$ وبالتالي المنحنى $f(0)=2(0)^3-3(0)^2+1$ وبالتالي المنحنى $f(0)=2(0)^3-3(0)^2+1$

 $x_0=rac{1}{2}$ كتابة معادلة للمماس (T) للمنحنى (C_f) في النقطة ذات الفاصلة (T)

 $(T):-\frac{3}{2}x+\frac{5}{4} \ \text{idd} \ \left(T\right):-\frac{3}{2}\left(x-\frac{1}{2}\right)+\frac{1}{2} \ \text{idd} \ \left(T\right):f'\left(\frac{1}{2}\right)\left(x-\frac{1}{2}\right)+f\left(\frac{1}{2}\right)$

7 إنشاء المماس (T) (C_f) والمنحني (C_f): (7



f(x) = m مناقشة تبعا لقيم الوسيط الحقيقي m، عدد حلول المعادلة: 8

من أجل
$$[-\infty;0]$$
 من أجل $m\in]-\infty$

$$x_1=-rac{1}{2}$$
 من أجل $m=0$ يوجد حل مضاعف $x_0=1$ و حل $m=0$

من أجل
$$[0;1]$$
 يوجد ثلاثة حلول $m\in [0;1]$

$$x_3=rac{3}{2}$$
 يوجد حل مضاعف $x_2=0$ وحل $m=1$

من أجل
$$[1;+\infty]$$
 من أجل وحيد $m \in [1;+\infty]$

إنتهى تصحيح المـوضـوع الأول

تصحيح المـوضـوع الثاني

حل التمرين الأول 05 ن

ن على 4: $2a + 5b^3$ يقبل القسمة على 4: 1

 $-2a + 5b^3 \equiv 0$ نقول عن العدد $2a + 5b^3 \equiv 0$ أنه يقبل القسمة على 4 إذا كان

 $2a \equiv 2[4] \cdots$ لدينا: $a \equiv 3[4]$ لدينا: $a \equiv 3[4]$ لدينا: الم

 $b^3 \equiv 0$ [4] يكافئ $b^3 \equiv 8$ [4] يكافئ $b^3 \equiv 2^3$ [4] يكافئ $b \equiv 3$ [4] ولدينا:

 $5b^3\equiv 0[4]\cdots$ ويكافئ

 $2a + 5b^3 \equiv 2[4]$ ينتج: $a + 5b^3 \equiv 2[4]$ طرف لطرف ينتج:

ومنه العدد $2a + 5b^3$ لا يقبل القسمة على 4.

على 4: 1 ناي قسمة العدد $a^2 - 2b^3$ على 4: 2

 $a^2\equiv 1[4]\cdots$ لدينا: $a^2\equiv 3[4]\cdots$ يكافئ $a^2\equiv 3^2[4]\cdots$ لدينا: $a^2\equiv 3[4]\cdots$ يكافئ $a^2\equiv 3[4]\cdots$

 $2b^3\equiv 0[4]\cdots$ ولدينا: $b^3\equiv 0[4]$ يكافئ $b^3\equiv 0$

 $a^2 - 2b^3 \equiv 1[4]$ نطرح الموافقة $a^2 - 2b^3 \equiv 1[4]$ نطرح الموافقة

ومنه باقي قسمة العدد a^2-2b^3 على 4 هو 1.

على 4: 1 ناي قسمة العدد $a^2 - 2b^3$ على 4: 3

 $a+1\equiv 4[4]$ لدينا: a=3+1[4] يكافئ a=3[4] لدينا:

 $a+1\equiv 0$ [4] : (حسب خاصية التعدي $a+1\equiv 0$ فإن

 $a \equiv -1$ [4] يكافئ $a + 1 - 1 \equiv 0 - 1$ [4] يكافئ

استنتاج باقي قسمة العدد $a^{2021} imes b^{1442}$ على 4 ط

 $a^{2021} \equiv (-1)^{2021}[4]$ لدينا: $a \equiv -1[4]$ يكافئ

 $a^{2021}\equiv 3[4]\cdots$ أن العدد 2021 فردي فإن: $a^{2021}\equiv -1[4]$ أي: عا أن العدد 2021 مردي فإن

 $a^{1442} \equiv (-1)^{1442} [4]$ لدينا: $a \equiv -1[4]$

 $a^{1442} \equiv 1[4] \cdots$ اأن العدد 1442 زوجي فإن:

 $a^{2021} imes a^{1442} \equiv 3 imes 1[4]$ نضرب الموافقة $oldsymbol{6}$ في الموافقة الموافقة

$$a^{2021} \times a^{1442} \equiv 3[4]$$
 يكافئ

ومنه باقي قسمة العدد $a^{2021} imes a^{1442}$ على 4 هو 3.

ن 1 منتاج أن: $a^{2021} + a^{1442} \equiv 0$ (4) ناتاج أن: (5)

 $a^{2021} imes a^{1442} \equiv 4[4]$ يَكَافَئُ $a^{2021} + a^{1442} \equiv 3 + 1[4]$ يَكَافَئُ $a^{2021} + a^{1442} \equiv 3 + 1[4]$ يَكُافُئُ $a^{2021} + a^{1442} \equiv 0[4]$ يَكُافُئُ $a^{2021} + a^{1442} \equiv 0[4]$

حل التمرين الثاني <mark>06 ن</mark>

1 • تعيين الأساس r

* طريقة 1

$$\begin{cases} 1 = u_0 + 3r \cdots (I) \\ 19 = u_0 + 12r \cdots (II) \end{cases}$$
 وبالتعويض نجد:
$$\begin{cases} u_3 = u_0 + 3r \\ u_{12} = u_0 + 12r \end{cases}$$
 : نان u_n متتالية حسابية فإن:

 $(19-1) = (u_0-u_0) + (12-3)r$ بطرح (II) من (II) من طرف لطرف ینتج:

 $r = \frac{18}{9} = 2$ ومنه: 18 = 9r

+ طریقة 2

 $r=rac{18}{9}=2$ لدينا: $u_1 = 9r$ ومنه: $u_1 = 1+9r$ أي: $u_2 = u_3 + (12-3)r$ لدينا:

تعيين الحد الأول u₀

 $u_0 = -5$:نعوض قيمة r في المعادلة $u_0 = -5$ ينتج: $u_0 = 1 - 6$ أي $u_0 = 1 - 6$ ينتج

عبارة حد العام u_n بدلالة n: 2

 $u_n = u_0 + n \times r$ عبارة الحد العام u_n لمتتالية حسابية حدها الأول u_0 وأساسها r بالعلاقة التالية: $u_n = 2n - 5$ بعد التعويض والترتيب نجد: $u_n = 2n - 5$

• حساب 18: ن

 $u_{18}=2(18)-5=36-5=31$ بالتعویض فی عبارة الحد العام نجد:

 $u_n = 2021$: تعيين العدد الطبيعي n حتى يكون (3)

 $n = \frac{2026}{2} = 1013$ تكافئ 2n = 2026 تكافئ 2n = 2021 + 5 تكافئ 2n = 5 = 2021 تكافئ n = 2021

ن 1
$$S_n = u_0 + u_1 + u_2 + \dots + u_n$$
: حساب بدلالة n المجموع 4

$$S_n = u_0 + u_1 + u_2 + \dots + u_n = (n+1) \left(\frac{u_0 + u_n}{2}\right)$$

$$= (n+1) \left(\frac{-5 + 2n - 5}{2}\right)$$

$$= (n+1) \left(\frac{2n - 10}{2}\right) = (n+1) \left(\frac{2(n-5)}{2}\right) = (n+1)(n-5)$$

ن
$$A = 31 + 33 + 34 + \dots + 2021$$
 إستنتاج المجموع: 5

$$A = 31 + 33 + 34 + \dots + 2021 = u_1 + u_1 + u_2 + \dots + u_{1013}$$
$$= (1013 - 18 + 1) \left(\frac{31 + 2021}{2}\right) = 1021896$$

ن 0.5
$$f(x) = 2 - \frac{2}{x+1}$$
 :-2 يختلف عن x يختلف على عدد حقيقي x يختلف عن 10.5 أجل كل عدد حقيقي

$$f(x) = \frac{2x+2}{x+2} = \frac{2x+2+4-4}{x+2} = \frac{2x+4-2}{x+2} = \frac{2(x+2)}{x+2} - \frac{2}{x+2} = 2 - \frac{2}{x+2}$$

$$-2 - \frac{2}{x+2} = \frac{2(x+2)}{x+2} - \frac{2}{x+2} = \frac{2x+4-2}{x+2} = \frac{2x+2}{x+2} = f(x)$$

$$f(x) = 2 - \frac{2}{x+1}$$

2 حساب النهايات

ن 0.5
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{2x+2}{x+2} = \lim_{x \to -\infty} \frac{2x}{x} = 2$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{2x+2}{x+2} = \lim_{x \to +\infty} \frac{2x}{x} = 2$$

ن 0.5
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{2x+2}{x+2} = \lim_{x \to +\infty} \frac{2x}{x} = 2$$

x+2 إشارة المقام

x	$-\infty$		-2		+∞
x + 1		_	Ó	+	

$$\lim_{x \to -2} f(x) = \lim_{x \to -2} \frac{2x+3}{x+2} = \frac{-1}{0^{-}} = +\infty$$

$$\lim_{x \to -2} f(x) = \lim_{x \to -2} \frac{2x+3}{x+2} = \frac{-1}{0^+} = -\infty$$

 $oldsymbol{arphi}$ استنتاج أن المنحنى (C_f) يقبل مستقيمين مقاربين مع تعيين معادلة لكل منهما:

$$\lim_{x \to -\infty} f(x) = 2$$
 و $\lim_{x \to -\infty} f(x) = 2$ \Rightarrow لدينا:

ومنه المستقيم ذو المعادلة
$$y=2$$
 مستقيم مقارب أفقي للمنحنى (C_f) بجوار $(\infty-)$ وبجوار $(\infty-)$. $\lim_{x \to -2} f(x) = -\infty$ مستقيم مقارب عمودي للمنحنى $\lim_{x \to -2} f(x) = -\infty$ مستقيم مقارب عمودي للمنحنى (C_f) .

ن 1 :f للدالة المشتقة f' للدالة f

$$f'$$
 الدالة f قابلة للإشتقاق على $]-\infty;-2[\cup]-2;+\infty[$ و دالتها المشتقة $f'(x)=\frac{(2x+2)'(x+2)-(x+2)'(2x+2)}{(x+2)^2}=\frac{2(x+2)-(2x+2)}{(x+2)^2}=\frac{2}{(x+2)^2}$ حيث:

• دراسة إشارة f'(x): f'(x)

f'(x) > 0 من نفس إشارة البسط ومنه f'(x) > 0 فإن إشارة f'(x) > 0

• إتجاه تغير الدالة f

 $]-2;+\infty$ و المجال f متزايدة تماما على كل من المجال $]-\infty;-2$ والمجال $[-2;+\infty]$

(4) جدول تغیرات f 0.5 ن

x	-∞	-2 +∞
f'(x)	+	+
f(x)	+∞	_∞

تعيين احداثيات نقط تقاطع المنحني (C_f) مع حاملي محوري الإحداثيات:

• مع محور الفواصل: <mark>0.5 ن</mark>

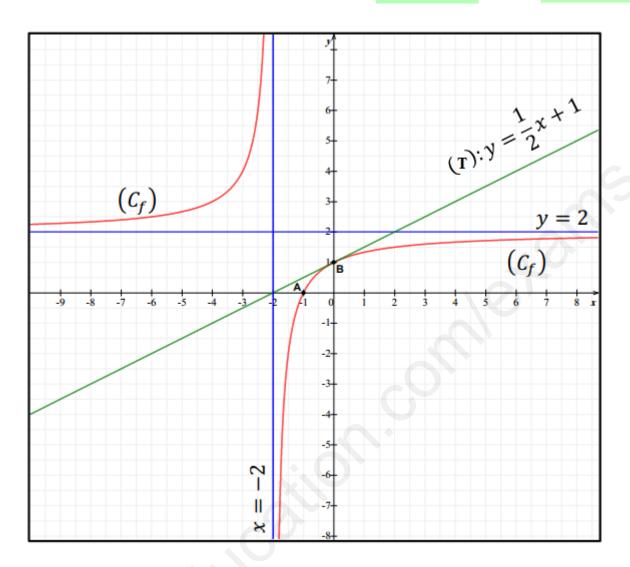
معناه
$$x = -\frac{2}{2} = -1$$
 معناه $y = 0$ معناه $y = 0$ معناه $y = 0$ معناه $y = 0$ معناه وبالتالي المنحنى $y = 0$ معناه في النقطة $x = -\frac{2}{x+2} = 0$ معناه وبالتالي المنحنى $y = 0$ معناه في النقطة $y = 0$ معناه وبالتالي المنحنى $y = 0$ معناه وبالتالي المنحنى المنحنى وبالتالي و

$$f(0)=rac{2(0)+2}{(0)+2}=rac{2}{2}=1$$
 ومنه: $f(0)$ ومنه: $x=0$ معناه $x=0$ معناه وبالتالي المنحنى (C_f) يقطع محور التراتيب في النقطة B حيث:

نابة معادلة للمماس (T) للمنحنى (C_f) في النقطة ذات الفاصلة (T)

$$(T): \frac{1}{2}x + 1$$
 تکافئ $(T): f'(0)(x - 0) + f(0)$

 (C_f) إنشاء المماس (T) (C_f) والمنحنى (C_f) :



- ن f(x) = m مناقشة تبعا لقيم الوسيط الحقيقي m، عدد حلول المعادلة: 8
 - من أجل $]2;+\infty[$ عن أجل [$]2;+\infty[$ من أجل وحيد.
 - من أجل m=2 لا يوجد حلول.

إنتهى تصحيح المــوضــوع الثاني

