الجمهورية الجزائرية الديمقراطية الشعبية

مديرية التربية لولاية ميلة دورة: ماي 2018

امتحان البكالوريا التجريبي للتعليم الثانوي

الشعبة: تقني رياضي

المدة: 04 سا و 30 د

اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين التاليين:

الموضوع الأول

التمرين الأول: (4 نقاط)

 $\left(\overset{
ightarrow}{O; \overset{
ightarrow}{u}, \overset{
ightarrow}{v}}
ight)$ المستوي المركب منسوب إلى المعلم المتعامد و المتجانس

. $z_D = 2 - 6i$ و $z_C = z_B e^{i\frac{\pi}{2}}$ ، $z_B = -z_A$ ، $z_A = 2 - 2i$ و التي لواحقها على الترتيب ، النقط C ، B ، A و D التي لواحقها على الترتيب ،

- $z_{A}^{2018}+z_{C}^{2018}=0$ في الشكل الأسبي ، و بين أن $z_{C}^{2018}=z_{B}$ على الشكل الأسبي ، و بين أن
 - 2) أ) علم النقط C ، B ، A و (2
- . $\frac{\pi}{2}$ بين أن النقطة D هي صورة النقطة C بالدوران الذي مركزه النقطة D
 - ج) ما طبيعة الرباعي ABCD ؟ مع التعليل .
- $\{(A,1);(B,-1);(C,\alpha)\}$: عدد حقيقي غير معدوم ، نسمي النقطة مرجح الجملة المثقلة lpha (3
- أ) بين أن $\overrightarrow{CG}_{\alpha} = \frac{1}{\alpha} \overrightarrow{BA}$ ، استنتج طبيعة المجموعة (Δ) مجموعة النقط محدما يمسح α مجموعة الأعداد الحقيقية الغير معدومة ، ثم أنشئ (Δ).
 - $_{\cdot}$. $_{D}$ عين قيمة $_{\alpha}$ لكي تنطبق النقطة النقطة و على النقطة
 - . $\{(A,1);(B,-1);(C,2)\}$ عين لاحقة النقطة G_2 مرجح الجملة المثقلة (4
 - ب) حدد طبیعة (Γ) مجموعة النقط M من المستوي حیث $4\sqrt{2}$ = $4\sqrt{2}$ و عناصر ها الممیزة و أنشئها.

التمرين الثاني: (5 نقاط)

. نعتبر المعادلة (1) ذات المجهول (x;y) عددان صحيحان (x;y) عددان صحيحان (1) غتبر المعادلة (1) ذات المجهول (x;y)

- 1) أ) عين القاسم المشترك الأكبر للعددين 2688 و 3024.
- 8x + 9y = -10....(2) استنتج أن المعالة (1) تكافئ المعادلة
 - (2) حل المعادلة (2) اذا علمت أن الثنائية (1,-2) حلا خاصا لها
- $x^2 \equiv y + 3[5]$ عين الثنائيات (2) حلول المعادلة (2) عين الثنائيات (3)
- C(1,0,3) و B(0,1,4) ، A(2,-2,0) نعتبر النقط $O; \vec{i}, \vec{j}, \vec{k}$ و المتعامد والمتعامد والمتعامد والمتعامد (Az,-2,0) نعتبر النقط (Az,-2,0) المعرف بالمعادلة (Az,-2,0)

الصفحة 1 من 4

- . معادلة ديكارتية له x+2y-z+2=0 حيث (P_2) معادلة ديكارتية له B ، A معادلة ديكارتية له
 - . ب) اثبت أن المستويين (P_1) و (P_2) متقاطعان
 - $(P_2)_{\mathfrak{g}}(P_1)$ ليكن (Δ) مستقيم تقاطع المستويين

. (2) أثبت أن إحداثيات نقط المستقيم (Δ) تحقق المعادلة

التمرين الثالث: (4 نقاط)

 $u_{n+1} = \frac{2}{3}u_n + 3n - 1$ ، معرفة كمايلي $u_0 = -3$: ومن أجل كل عدد طبيعي المعرفة كمايلي (u_n)

- u_3 u_2 ' u_1 ' u_1 (1
- $u_n > 0$: $n \ge 3$ بين بالتراجع أنه من أجل كل عدد طبيعي
- . (u_n) عدد طبیعی کے استنتج نہایة المتتالیة المتتالیة $u_n \succ 3n-4$: $n \geq 4$ عدد طبیعی کے استنتج انہ من أجل کل عدد طبیعی
 - $v_n = u_n 9n + 30$: نعرف المتتالية (v_n) من أجل كل عدد طبيعي (2
 - v_0 أ) برهن أن (v_n) متتالية هندسية يطلب تحديد أساسها وحدها الأول

$$u_n = 27 \left(\frac{2}{3}\right)^n + 9n - 30$$
: n عدد طبیعي عدد طبیعي ب)بین أنه من أجل كل عدد طبیعي

- $au_n = e^{v_0} \times e^{v_1} \times \dots \times e^{v_n}$ (أ) أحسب بدلالة n الجداء، (أ) (3)
- $S_n = u_0 + u_1 + \dots + u_n$ المجموع المجموع (ب

التمرين الرابع: (7 نقاط)

 $f(x) = x + 1 + \ln(x + 1) - \ln(x + 2)$: يعتبر الدالة العددية f المعرفة على المجال $[-1,+\infty[$ كما يلي $f(x) = x + 1 + \ln(x + 1) - \ln(x + 2)$. $(0; \overrightarrow{i}, \overrightarrow{j})$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس (C_f)

- ($f(x) = x + 1 + \ln\left(\frac{x+1}{x+2}\right)$ اُحسب $f(x) = x + 1 + \ln\left(\frac{x+1}{x+2}\right)$). $\lim_{x \to +\infty} f(x)$ و ($\lim_{x \to +\infty} f(x)$
- $f'(x) = \frac{x^2 + 3x + 3}{(x+1)(x+2)}$:]-1,+\infty[\ldots \ldot
 - . ب) أستنتج اتجاه تغير الدالة f ثم شكل جدول تغيراتها
- (A) بين $1 = \lim_{x \to +\infty} (f(x) x) = \lim_{x \to +\infty} (f(x) x) = 1$ بين $\lim_{x \to +\infty} (f(x) x) = 1$ بين $\lim_{x \to +\infty} (f(x) x) = 1$ بين أدرس وضعية المنحنى (C_f) بالنسبة إلى المستقيم (Δ).
 - -0.5 \prec lpha بين أن المنحنى lpha يقطع حامل محور الفواصل في نقطة وحيدة فاصلتها lpha حيث lpha
 - (C_f) و(Δ) أرسم (5).
 - $x\mapsto \ln(x-\lambda)$ أ) $x\mapsto (x-\lambda)\ln(x-\lambda)-x$ هي دالة أصلية للدالة λ (6) أ) عدد حقيقي ، بين أن الدالة λ الدالة λ على المجال λ
 - ب) أحسب العدد $S = \int_{0}^{1} (x+1-f(x))dx$ ، وفسر بيانيا النتيجة.
 - $h(x) = [f(x)]^2$: كمايلي $-1,+\infty$ المعرفة على المجال h المعرفة على المجال h المعرفة على المجال $h(x) = [f(x)]^2$: أدرس تغيرات الدالة h ، ثم شكل جدول تغيراتها (دون تعيين عبارة h

الصفحة 2 من 4

انتهى الموضوع الأول

الموضوع الثاني

التمرين الأول: (4 نقط)

lpha صندوق به ثلاث كرات خضراء تحمل الرقم 0، كرتان حمراوان تحملان الرقم 5 وكرة واحدة بيضاء تحمل العدد lpha عدد طبيعي غير معدوم يختلف عن 5 و10) ، كل الكرات لا نميز بينها عند اللمس.

يسحب لاعب ثلاث كرات في أن واحد

- I) احسب احتمال الحوادث التالية:
- " اللاعب يسحب ثلاث كرات من نفس اللون A
- " اللاعب يسحب ثلاث كرات من ألوان مختلفة B
 - " اللاعب يسحب كرتين فقط من نفس اللون " C
- اللاعب يربح بالدينار مجموع الأرقام المسجلة على الكرات المسحوبة.

نعرف المتغير العشوائي X الذي يرفق بكل عملية سحب ثلاث كرات الربح بالدينار الذي يتحصل عليه اللاعب

- $P(X=\alpha)=\frac{3}{20}$ عين قيم المتغير العشوائي، و بين أن (1
 - X عرف قانون الاحتمال للمتغير العشوائي X
- (3) أحسب بدلالة α الأمل الرياضي E(X) للمتغير العشوائي، وعين قيمة العدد α حتى يربح اللاعب 20 دينارا.

التمرين الثاني: (5 نقاط)

- $z^2-6z+13=0$: حل في مجموعة الأعداد المركبة المعادلة (I
- المستوي المركب منسوب إلى المعلم المتعامد و المتجانس. $(O; \overrightarrow{u}, \overrightarrow{v})$.

نعتبر النقط $z_{\scriptscriptstyle D}=\overline{z_{\scriptscriptstyle C}}$ و $z_{\scriptscriptstyle C}=3+2i$ ، $z_{\scriptscriptstyle B}=2$ ، $z_{\scriptscriptstyle A}=i$ على الترتيب. C ، B ، A نعتبر النقط

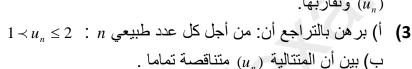
- D أ) علم النقط C، B، A و
- C ب) حدد الكتابة المركبة للتشابه المباشر الذي مركزه A ويحول
 - . ABC بين أن $\frac{z_C-z_B}{z_A-z_B}=-i$ ثم استنتج طبيعة المثلث (ج
 - ADC د) بر هن أن النقطة B هي مركز الدائرة المحيطة بالمثلث
- z'=(1+i)z+1 التحويل النقطي الذي يرفق بكل نقطة M ذات اللاحقة تالنقطة M' النقطة M' التحويل النقطي الذي يرفق بكل نقطة M
 - أ) عين طبيعة التحويل g وعناصره المميزة ، ثم عين لاحقة صورة النقطة g بالتحويل g
 - . $\mathbb R$ و $z=2+\sqrt{5}e^{\theta}$ و $z=2+\sqrt{5}e^{\theta}$ ب)عين ($z=2+\sqrt{5}e^{\theta}$
 - $z' z_C = (1+i)(z z_B)$ ج) بر هن أن
 - د) استنتج انه اذا كانت M نقطة من المجموعة (E) فإن M تنتمي إلى دائرة (H) يطلب تحديد مركزها ونصف قطرها ثم أنشئ كل من (E) و (H) في نفس المعلم السابق .

الصفحة 3 من 4

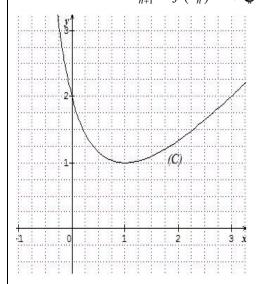
التمرين الثالث: (4 نقاط)

نعتبر الدالة f المعرفة على المجال $[-1,+\infty[$ كما يلي: $f(x) = \frac{x^2-x+2}{x+1}$ و و $f(x) = \frac{x^2-x+2}{x+1}$

-]-1,+ ∞ [المجال على المجال) أدرس اتجاه تغيرات الدالة $f(x) \in [1,2]$ فإن $x \in [1,2]$: فإن أستنتج أنه إذا كان
- $u_{n+1} = f(u_n)$ ، n عدد طبيعي $u_0 = 2$ ومن أجل كل عدد طبيعي (u_n) (2)
 - الحدود الفواصل الحدود على حامل محور الفواصل الحدود u_2 مبرزا خطوط التمثيل، ثم ضع تخمينا حول اتجاه تغيرات u_2 و u_1 ، u_2 و u_3 .



- ج) استنتج أن المتتالية (u_n) متقاربة وحدد نهايتها.
- $0 < u_{n+1} 1 \le \frac{1}{3}(u_n 1)$ فإن: n فإن: (4
 - $0 \prec u_n 1 \leq \frac{1}{3^n}$ فإن: n فان عدد طبيعي من أجل كل عدد طبيعي
 - $S_n = u_1 + u_2 + \dots + u_n$: نضع (ج



. $\lim_{x\to +\infty} S_n$ بر هن أنه من أجل كل عدد طبيعي غير معدوم n فإن: $n \prec S_n \leq n + \frac{1}{2} \left(1 - \frac{1}{3^n}\right)$

التمرين الرابع: (7 نقاط)

- $g(x)=1-xe^{1-x}$: كما يلي كما ياء والمعرفة على مجموعة الأعداد الحقيقية $\mathbb R$ كما يلي (I
 - g ادرس اتجاه تغیر الداله g
 - . g(x) أستنتج حسب قيم العدد الحقيقي x إشارة
- $f(x) = x + (x+1)e^{1-x}$: نعتبر الدالة العددية f المعرفة على مجموعة الأعداد الحقيقية \mathbb{R} كما يلي (II $(O; \overrightarrow{i}, \overrightarrow{j})$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس (C_f)
 - $\lim_{x\to -\infty} f(x)$ بين أن $= +\infty$ ، وأحسب (أ (1
- ب) بين أن من أجل كل عدد حقيقي x:g(x)=g(x) ، ثم أدرس اتجاه تغير الدالة f و شكل جدول تغيراتها . ج) استنتج أن للمنحنى C_f نقطة انعطاف يطلب تعيين إحداثييها .
 - . (C_f) مائلا المنحنى y=x مقارب مائلا المنحنى (1 ومعرف بالمعادلة عند) المعرف بالمعادلة (2
 - . (Δ) بالنسبة إلى المستقيم (C_f) بالنسبة إلى المستقيم
 - . امستقيم معادلته y=x+e مين أن المستقيم (T) مماس للمنحنى (y=x+e معادلته (T) مستقيم معادلته
 - $-0.9 \prec lpha \prec -0.8$ عيث أن المنحنى (C_f) يقطع حامل محور الفواصل في نقطة وحيدة فاصلتها (C_f) عيث (C_f) عن أحسب (C_f) ثم أرسم (C_f) والمنحنى (C_f) .
 - . $(x+1)e^{1-x}=|m|$ ناقش بيانيا وحسب قيم الوسيط الحقيقي m عدد وإشارة حلول المعادلة

الصفحة 4 من 4

انتهى الموضوع الثاني