الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية

مدرية التربية لولاية تيبازة ثانوية تركية محمود بوا سماعيل

المستوى والشعبة : 3ع ت + 3تقني رياضي

2021نوفمبر 2021

اختبار الفصل الأول في مادة الرياضيات

التمرين الأول : (12 نقطة)

 $\left(O\,; \overrightarrow{i}\,; \overrightarrow{j}
ight)$ البخزء الأول : المستوي منسوب إلى المعلم المتعامد و المتجانس . I الدالة العددية g معرفة على المجال $\left[-2;+2
ight]$ كما يلي :

$$g(x) = (a-2x)e^x + b$$

حیث aو b أعداد حقیقیة

. b و a بدلانة a و g'(x)

: و d بحل جملة معادلتين التالية a و d بحل جملة معادلتين

$$\begin{cases} g'(0) = 1 \cdot \dots \cdot (1) \\ g'(x) - g(x) = -2e^x - 2 \cdot \dots \cdot (2) \end{cases}$$

b=2 و a=3 الحزء الثاني:

: ولتكن g دالة عددية معرفة على المجال [-2;+2] كما يلي

$$g(x) = (3-2x)e^x + 2$$

1- ادرس اتجاه تغیر الدالة العددیة g علی المجال $\left[-2;+2 \right]$ ثم شکل جدول تغیراتها.

. $1,68 < \alpha < 1,69$ حيث أنّ المعادلة $g\left(x\right) = 0$ تقبل حلا وحيد ا

. $g\left(x\right)$ أم حدد تبعا لقيم العدد الحقيقي

:___: [-2;+2] معرفة على f معرفة على .III

$$f(x) = 1 + \frac{4x - 2}{e^x + 1}$$

. ليكن (C_f) تمثلها البياني في المستوي المنسوب إلى المعلم

: يكون : المجال $\left[-2;+2
ight]$ يكون x من المجال يكون x عدد حقيقي x

$$f'(x) = \frac{2g(x)}{(e^x + 1)^2}$$

. استنتج اتجاه تغيّر الدّالة f ثم شكّل جدول تغيراتها

 x_0 يطلب إيجاد $A\left(x_0;1\right)$ مماس ما $A\left(x_0;1\right)$ يطلب إيجاد -2 وكتابة معادلة المماس . T

 $f\left(lpha
ight)$: عین حصرا لــــ $f\left(lpha
ight)=4lpha-5$: حبین أن

(T) اعط تفسیر للنتیجة $\lim_{x olpha}rac{f\left(x
ight)-f\left(lpha
ight)}{x-lpha}$: اعط تفسیر المنتیجة (C_f) . (C_f

k انطلاقا من $\left(C_f\right)$ انطلاقا من $\left(C_f\right)$ انطلاقا من $\left(C_f\right)$ انطلاقا من $\left(C_f\right)$ على المجال $\left[-2;+2\right]$.

<u>التمرين الثاني </u>: (08 نقاط)

 $\left(O\,; \overrightarrow{i}\,; \overrightarrow{j}\,
ight)$ المستوي منسوب إلى المعلم المتعامد و المتجانس

 $f\left(x
ight)=rac{\left|x+1
ight|-1}{x^2-4}$: الدالة العددية f معرفة على $f\left(x
ight)=\left(-2;+2
ight)$ بياني في المستوي المنسوب إلى المعلم السابق وليكن $\left(C_f
ight)$ تمثلها البياني في المستوي المنسوب إلى المعلم السابق

رمز -1 المطلقة المطلقة f في المجال -2;-1 دون رمز المطلقة

$$f(x) = -\frac{1}{x-2}$$
 : هي

ب- استنتج عبارة الدالة f في المجال $[-1;2[\,\cup\,]2;+\infty[$ دون رمز القيمة المطلقة ؟

احسب $\lim_{x \longrightarrow \infty} f\left(x\right)$ و $\lim_{x \longrightarrow \infty} f\left(x\right)$ ، $\lim_{x \to \infty} f\left(x\right)$ ، $\lim_{x \to \infty} f\left(x\right)$. \lim

 $]-\infty;-2[\,\cup\,]-2;2[\,\cup\,]2;+\infty[$ على المجال f على الدالة f على الدالة . شكل جدول تغيراتها .

 $\lim_{x \stackrel{>}{\longrightarrow} -1} \frac{f\left(x\right) - f\left(-1\right)}{x+1}$ و $\lim_{x \stackrel{>}{\longrightarrow} -1} \frac{f\left(x\right) - f\left(-1\right)}{x+1}$ و $\lim_{x \stackrel{>}{\longrightarrow} -1} \frac{f\left(x\right) - f\left(-1\right)}{x+1}$ ماذا تستنتج ؟ فسر النتيجة هندسيا ؟

. المعادلة |x+1|-1=0 ، المعادلة |x+1|-1=0 ، المعادلة |x+1|-1=0 . |x+1|-1=0 . |x+1|-1=0

<u>انتهي الموضوع</u>

<u>التصحيح النموذجي 3ثانوي علمي +تقني رياضي</u>

x	-2		$\frac{1}{2}$	2
g'(x)		+	þ	_
g(x)	g(-2))	$g(\frac{1}{2})$	g(-2)

تبین أن المعادلة $g\left(x\right)=0$ تقبل حلا وحید ا α

حسب مبرهنة القيم المتوسطة : الدالة g

و متناقصة على المجال
$$\left\lceil \frac{1}{2};+2 \right\rceil$$
 و

اذن المعادلة $g\left(1,68\right)\! imes\!g\left(1,69\right)\!<\!0$

تقبل حلا وحيدا g(x) = 0

 $\alpha \in]1,68;1,69[$

تحديد إشارة

اعتمادا g(x)

على جدول تغيرات

$$\begin{array}{|c|c|c|c|c|c|} \hline x & -2 & a & & +2 \\ \hline g(x) & + & 0 & & + \\ \hline \end{array}$$

III. 1- أ- <u>حساب</u>

$$f(x) = 1 + \frac{4x - 2}{e^{x} + 1}$$

$$f'(x) = \frac{4(e^{x} + 1) - e^{x}(4x - 2)}{(e^{x} + 1)^{2}} = \frac{2g(x)}{(e^{x} + 1)^{2}}$$

f على المجال f على المجال $\left[-2;+2\right]$

x	-2	a	+2
g(x)	+	Ó	+
f'(x)	+	þ	_

: f'(x) إشارة

اتحاه تغير

التمرين الأول : الدالة
$$g$$
 معرفة على المجال $\left[-2;2
ight]$ بـــ $=\left(a-2x
ight)e^{x}+b$

g'(x) . قام حساب . قام . ت

ب-
$$g'(x) = (a-2-2x)e^x$$
 لدينا $g'(x) = 1$ $g'(x) - g(x) = -2e^x - 2$ بالتعويض نجد

$$\begin{cases} a = 3 \\ b = 2 \end{cases}$$

b=2 و a=3 فإن . $g(x)=(3-2x)e^x+2$

-1- دراسة اتجاه تغير على المجال -2;2:

$$1-2x=0$$
 ومنه $g'(x)=(1-2x)e^x$
. $e^x>0$ و $x=\frac{1}{2}$

بمأن g'(x) > 0 على المجال

فإن الدلة
$$g$$
 متزايدة $\left[-2;rac{1}{2}
ight]$

$$-2;\frac{1}{2}$$
 تماما على المجال

$$\left\lfloor \frac{1}{2};2 \right
floor$$
 بمأن $g'(x) < 0$ على المجال و $g'(x) < 0$ فإن الدلة g متناقصة تماما على

 $\left|\frac{1}{2};2\right|$ المجال

<u>-</u> جدول التغيرا<u>ت</u>

[-2;lpha] بمأن f '(x)>0 على المجال f متزايدة تماما على المجال [-2;lpha] .

 $[\alpha;2]$ بمأن f'(x) < 0 على المجال وأن الدلة f متناقصة تماما على المجال $[\alpha;2]$.

جدول تغيرات

$$\begin{array}{|c|c|c|c|c|}
\hline
x & -2 & a & +2 \\
\hline
f'(x) & + & 0 & - \\
\hline
f(x) & & & & \\
f(-2) & & & & & \\
\hline
\end{array}$$

تبین أنّ المنعنی (C_f) یقبل عند (C_f) یقبل عند $A\left(x_0;1\right)$ معناه $f\left(x_0\right)=1$ أي $f\left(x_0\right)=1+rac{4x-2}{e^x+1}=1$ $x=rac{1}{2}\cdots A\left(rac{1}{2};1\right)$

معادلة المماس T هي من الشكل $y=f'\left(\frac{1}{2}\right)\left(x-\frac{1}{2}\right)+f\left(\frac{1}{2}\right)$

ومنه
$$f'\left(\frac{1}{2}\right) = \frac{4}{\sqrt{e}+1}; f\left(\frac{1}{2}\right) = 1$$

$$y = \frac{4}{\sqrt{e} + 1}x + \frac{-1 + \sqrt{e}}{\sqrt{e} + 1} \cdots (T)$$

ي مين حصرا لـــ $f\left(lpha
ight)=4lpha-5$

$$f(\alpha)$$
:

$$g(\alpha) = 0$$

$$f(\alpha) = 1 + \frac{4\alpha - 2}{e^{\alpha} + 1}$$

$$1,68 < \alpha < 1,69$$
 حصر $f(\alpha) < 1,76$: $f(\alpha)$ حصر $\lim_{x \to \alpha} \frac{f(x) - f(\alpha)}{x - \alpha} = f'(\alpha) = 0$ حعبن -4

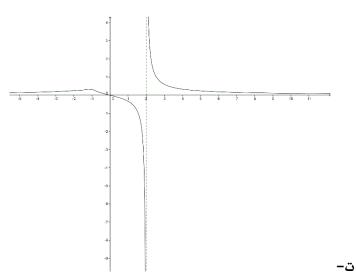
التفسير : (C_f) يقبل مماس موازي لمحور الفواصل عند النقطة ذات $y=f\left(lpha
ight)$ معادلته lpha

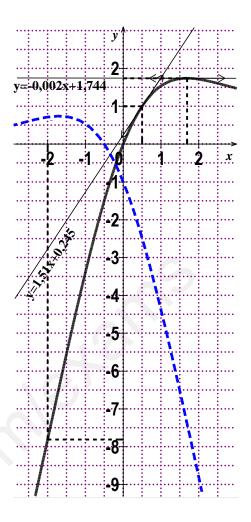
$$k(x) = \frac{-4xe^{x} - 2e^{x}}{e^{x} + 1}$$
 -1 . IV
$$f(-x) - 1 = \frac{-4x - 2}{e^{-x} + 1} = k(x)$$
 حساب

 $\left(T\;
ight)$ و $\left(C_{f}\;
ight)$ و -2

 (C_f) يمكن انشاء (C_k) برسم نظير يمكن انشاء بالنسبة لمحور الترتيب ثم ننشئ بانسحاب لــــ (C_k) شعاعه $\begin{pmatrix} C_f(-x) \end{pmatrix}$. $\stackrel{\rightarrow}{v} \begin{pmatrix} 0 \\ -1 \end{pmatrix}$

x	-2 $-a$	+2
-f'(-x)	+ 0	-
k(x)	f(a)-1 $f(2)-1$	f(-2)-1





: التمرين الثاني $f(x) = \frac{|x+1|-1}{x^2-4}$ $D_f = \Box - \{-2;2\}$ $f(x) = \frac{|x+1|-1}{x^2-4}$ $f(x) = \frac{|x+1|-1}{(x-1)}$ $f(x) = \frac{-(x+1)-1}{(x-2)(x+2)} = \frac{-1}{x-2}$ $D_{f_1} =]-\infty; -2[\bigcup]-2; -1]$ $f(x) = \frac{x+1-1}{x^2-4} = \frac{x}{x^2-4}$ $D_{f_2} = [-1;2[\bigcup]2; +\infty[$