الجمهورية الجزائرية الديمقراطية الشعبية

ثانوية محمد بن عبد الرحمان الديسي دورة ماي 2015 وزارة التربية الوطنية المتحان بكالوريا التعليم الثانوي التجريبي

الشَّعبة: علوم تجريبية

المدة: 03 ساعات و نصف

اختبار في مادة الرياضيات

على المترشح أن يختار أحد الموضوعين التاليين الموضوع الأول

التمرين الأول: (04) نقاط)

لكل سؤال جواب واحد صحيح فقط ، عين الجواب الصحيح مع التعليل في الفضاء المنسوب إلى معلم متعامد ومتجانس $O; \vec{i}; \vec{j}; \vec{k}$ نعتبر النقط $O; \vec{i}; \vec{j}; \vec{k}$ ، O(0;1;2) ،

$$\frac{2\sqrt{3}}{3}$$
 (بالمسافة بين النقطة O و المستقيم P هي: أ) $\frac{\sqrt{3}}{3}$

(AB) النقطة (D(0;-4;2) المستقيم (AB) با لا تتمي إلى المستقيم (D(0;-4;2)

(1;1;1) (ب المسقط العمودي للنقطة B على P هي: أ) (1;-1;1) ب (1;1;1) (ا(1;1;1) ب (1;1;1) ب (1;1;1)

 $x^2 + y^2 + z^2 = 3$ (ب بي مركزها $x^2 + y^2 + z^2 = \frac{1}{3}$ (أ هي: أ) هي 4. معادلة سطح الكرة التي مركزها $x^2 + y^2 + z^2 = 3$ و المماسة لـ(P) هي:

 $(\overline{MA} + \overline{MB} - \overline{MC})(\overline{MB} - \overline{MA}) = 0$ مجموعة النقط M من الفضاء والتي تحقق M = (A;1), (B;1), (C;-1) مجموعة النقط M من الفضاء والتي يشمل النقطة M = (A;1), (B;1), (C;-1) هي : أ) سطح كرة مركزها M = (A;1), (B;1), (C;-1) ونصف قطرها M = (A;1), (B;1), (C;-1) المستقيم الذي يشمل النقطة M = (A;1), (B;1), (C;-1)

(كروس معميال (كرين) المتأملين عمامات بالمعنى بأسم في البيار بالمعنى (()) الم

التمرين الثاني: (05 نقاط)

 $u_{n+1} = \frac{2}{3}u_n + \frac{1}{3}n + 1$: $n \ge 1$ عدد طبیعي عدد الأول $u_1 = 2$ المعرفة بحدها الأول $u_1 = 2$ ومن أجل كل عدد طبیعي ا

 (u_n) ثم ضع تخمينا حول اتجاه تغير المتتالية $u_{_4},u_{_3},u_{_2}$ 1.

 $u_n \le n+3$: $n \ge 1$ عدد طبیعي $1 \le n+3$: $n \ge 1$ عدد طبیعی 2

ب- بین أنه من أجل عدد طبیعي $n \geq 1$: $n \geq 1$: عدد طبیعي السابق السابق $u_{n+1} - u_n = \frac{1}{3}(n+3-u_n)$: $n \geq 1$

 $v_n = u_n - n$: المتتالية العددية المعرفة على $v_n = u_n - n$: المتتالية العددية المعرفة على $v_n = u_n - n$

$$V_n = \left(\frac{2}{3}\right)^{n-1}$$
 أ- بين أن (V_n) متتالية هندسية حدها العام

ب- استنتج u_n بدلالة n و احسب نهايتها

$$T_n = \frac{S'_n}{n^2}$$
 و $S'_n = u_1 + u_2 + ... + u_n$ و $S_n = v_1 + v_2 + ... + v_n$: $n \ge 1$ و $S'_n = u_1 + u_2 + ... + u_n$ و $S'_n = v_1 + v_2 + ... + v_n$ و $S'_n = v_1 + v_2 + ... + v_n$ و $S'_n = v_1 + v_2 + ... + v_n$

 $\lim_{n\to +\infty} T_n$ ثم عین S_n', S_n نم کل من S_n', S_n

التمرين الثالث: (04.5 نقاط)

: في المستوي المركب المنسوب إلى معلم متعامد ومتجانس $(O;\vec{u};\vec{v})$ ، نعتبر النقط D,C,B,A والتي لواحقها على الترتيب $Z_D=1+2i$ ، $Z_C=5+3i$ ، $Z_B=4-i$ ، $Z_A=-2i$

بيعيدنا ويلام الفريدة المرية يقالها الايماء

ellering with the wells - - -

dig (Little lieng) - m, (Lings) -

managett literature, and the second

و المالية والمشاكرة والمشاكرة والمشاكرة والمساكرة المساكرة والمشاكرة والمساكرة والمساك

- 420 hruss light ((-:)) ((:8),(1:b)) acres itied

 $\left(\overline{DB};\overline{AC}
ight)$ على الشكل الأسي و استنتج قيسا للزاوية $\frac{Z_C-Z_A}{Z_B-Z_D}$ على الشكل الأسي و استنتج قيسا للزاوية $\left(\overline{DB};\overline{AC}\right)$

ب- تحقق أن للقطعتين [BD], [AC] نفس المنتصف ،ثم استنتج طبيعة الرباعي ABCD.

-4 ونسبته I(1;-1) ونسبته I(1;-1) ونسبته h الذي مركزه النقطة I(1;-1) ونسبته h النصاكي h .

IEC جد حدد طبيعة التحويل النقطي f الذي مركزه النقطة I(1;-1) ويحول E إلى C مستنتجا نوع المثلث

 $\arg(Z-4+i)=\frac{\pi}{2}+2k\pi$: بعتبر (۲) مجموعة النقط M من المستوي ذات اللاحقة Z بحيث Z

(Γ) النقطة P(4;2) تنتمي إلى

ب- ما طبيعة المجموعة (٦)

التمرين الرابع: (06.5 نقاط)

 $g(x) = (x-1)^2 - 2\ln(x-1)$ بعتبر الدالة g المعرفة على المجال $g(x) = (x-1)^2 - 2\ln(x-1)$ بالدالة g المعرفة على المجال $g(x) = (x-1)^2 - 2\ln(x-1)$

1. احسب نهايات الدالة g عند أطراف مجال تعريفها .

2. ادرس تغيرات الدالة ع ثم أنشئ جدول تغيراتها.

g(x) على المجال g(x) على المجال g(x) 3.

 $f(x) = \frac{x-1}{2} + \frac{1+\ln(x-1)}{x-1}$: با $f(x) = \frac{x-1}{2} + \frac{1+\ln(x-1)}{x-1}$: $f(x) = \frac{x-1}{2} + \frac{1+\ln(x-1)}{x-1}$

 $(2 {
m cm}$ الوحدة (C_f) نسمي (C_f) نسمي معلم متعامد ومتجانس ((C_f)) (الوحدة (C_f))

 $\lim_{x\to +\infty} f(x)$ أنسب النتيجة، ثم احسب ا $\lim_{x\to +\infty} f(x)$ أنسب النتيجة، ثم احسب النتيجة، ثم احسب النتيجة المسبد النتيجة المسبد النتيجة المسبد النتيجة المسبد النتيجة ا

- استنتج اتجاه تغير الدالة f ثم شكل جدول تغير اتها .

 (Δ) . (Δ) نو المعادلة $\frac{1}{2}x-\frac{1}{2}$ مقارب مائل للمنحني (C_f) ثم حدد وضعية (C_f) بالنسبة إلى (Δ).

 $1.34 \le \alpha \le 1.35$: حيث α حيث α المنحني (C_f) يقطع حامل محو الفواصل في نقطة وحيدة فاصلتها α حيث α

. أنشئ (C_f) و (Δ)

. تحقق أنه من أجل كل x من المجال $|x| = \frac{x^2 - 2x + 3}{2(x - 1)} + \frac{\ln(x - 1)}{x - 1}$: |x| = 1 تم ناقش بيانيا وحسب قيم الوسيط 6. تحقق أنه من أجل كل |x| = 1

 $(x-1)e^{m(x-1)} = e^{-\frac{x^2-2x+3}{2}}$: غاد حلول المعادلة :

الموضوع الثاني

التمرين الأول: (05 نقاط)

 $(Z-2i)(Z^2-2\sqrt{3}Z+4)=0: Z: المعادلة ذات المجهول <math>(Z-2i)(Z^2-2\sqrt{3}Z+4)=0: Z: (D; \vec{u}; \vec{v})$ المعادلة ذات المجهول $(Z-2i)(Z^2-2\sqrt{3}Z+4)=0: D, C, B, A$ والتي لواحقها على $(Z-2i)(Z^2-2\sqrt{3}Z+4)=0: D, C, B, A$ والتي لواحقها على المركب المنسوب إلى معلم متعامد ومتجانس (D,C,B,A) ، نعتبر النقط $(Z-2i)(Z^2-2\sqrt{3}Z+4)=0: D, C, B, A$ والتي لواحقها على الترتيب $(Z-2i)(Z^2-2\sqrt{3}Z+4)=0: Z_D=-\sqrt{3}-i: Z_C=2i: Z_B=\sqrt{3}+i: Z_A=\sqrt{3}-i: Z_C=2i: Z_B=2i: Z_B=2i: Z_A=2i: Z_A=2$

D,C,B,A على الشكل الأسي ثم علّم النقط Z_D,C,B,A على الشكل الأسي ثم علّم النقط Z_D,C,B,A

ABC على الشكل الجبري ثم الشكل الأسي، استنتج طبيعة المثلث $\frac{Z_A-Z_B}{Z_C-Z_B}$

. جـ تحقق أن النقط D,C,B,A تنتمي إلى نفس الدائرة، يطلب تعيين مركزها ونصف قطرها

D إلى C و الزاوية و مركز التشابه المباشر C الذي يحوّل C إلى C إلى C إلى C النقطة C بالتشابه المباشر C هي النقطة C النقطة C بالتشابه المباشر C هي النقطة C

G مرجح الجملة $\{(A;|z_A|),(B;-|z_B|),(C;-|z_C|)\}$ عين G لاحقة النقطة $\{(A;|z_A|),(B;-|z_B|),(C;-|z_C|)\}$ مرجح الجملة $\{(A;|z_A|),(B;-|z_B|),(C;-|z_C|)\}$ من المستوي حيث $\{(B;|z_A|),(B;-|z_B|)\}$ من المستوي حيث $\{(B;|z_A|),(B;-|z_B|)\}$

E(E) عين طبيعة المجموعة E(E) ثم بين أن النقطة E(0;-1) تنتمي إلى E(E)

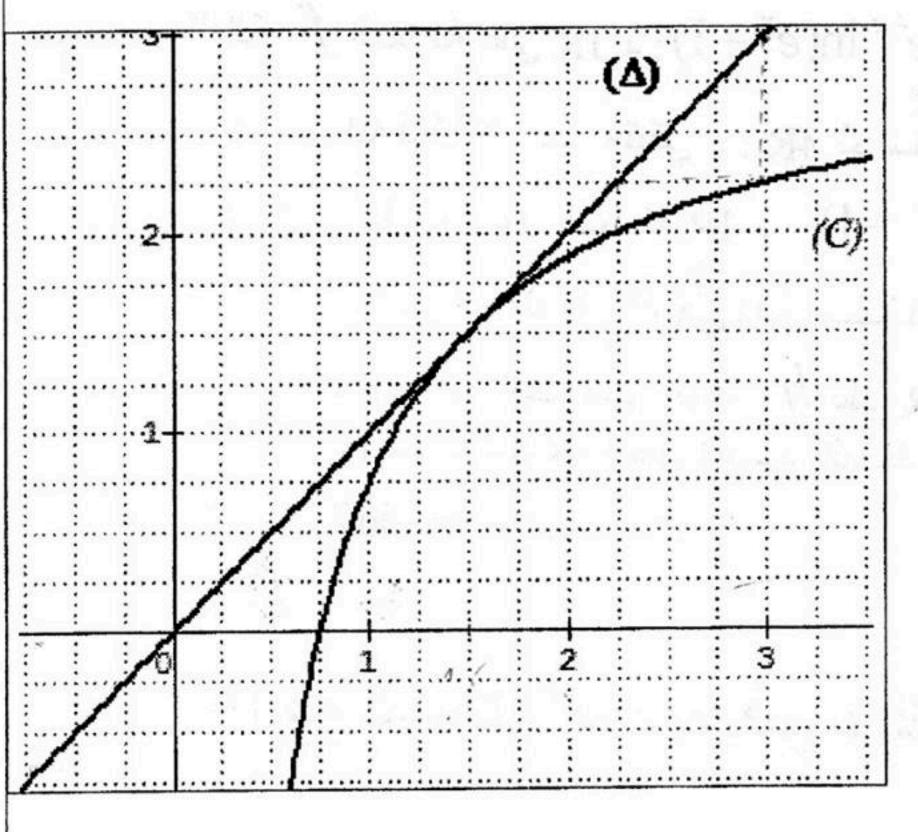
التمرين الثاني: (04 نقاط)

نعتبر الدالة f المعرفة على $I = \left[\frac{3}{2};3\right]$ ب $I = \left[\frac{3}{2};3\right]$ ب المعرفة على $I = \left[\frac{3}{2};3\right]$ ب $I = \left[\frac{3}{2};3\right]$ ب المعرفة على $I = \left[\frac{3}{2};3\right]$ ب المعادلة $I = \left[\frac{3}{2};3\right]$ ب المعادلة على عدد حقيق $I = \left[\frac{3}{2};3\right]$ ب المعادلة على عدد حقيق $I = \left[\frac{3}{2};3\right]$

 $f(x) = 3 - \frac{9}{4x}$: I من $f(x) = 3 - \frac{9}{4x}$ من $f(x) = 3 - \frac{9}{4x}$

 $u_{n+1} = \frac{12u_n - 9}{4u_n}$, u_n are defined and $u_n = 3$ are defined u_n . $u_n = 2$. Let $u_n = 3$ and $u_n = 4$ are defined $u_n = 4$. Let $u_n = 4$ are defined $u_n = 4$ are defined $u_n = 4$. Let $u_n = 4$ are defined $u_n = 4$ are defined $u_n = 4$. Let $u_n = 4$ are defined $u_n = 4$ are defined $u_n = 4$.

. ب- ضع تخمينا حول اتجاه نغير المتتالية (u_n) وتقاربها


 $\frac{3}{2} \le u_n \le 3$: n عدد طبیعي $n \ge u_n \le 3$

د- ادرس اتجاه تغير المتتالية واستنتج أنها متقاربة

 $u_n \neq \frac{3}{2}: n$ نضع من أجل كل عدد طبيعي 3.

$$V_n = \frac{2}{2u_n - 3}$$
: حيث المنتالية (v_n) حيث المنتالية المنتالية -

أ) بين أن (v_n) حسابية يطلب تعين أساسها و حدها الأول . بين أن (v_n) بدلالة n و احسب نهايتها (u_n) أوجد (u_n) بدلالة (u_n) و احسب نهايتها

التمرين الثالث: (04.5 نقاط)

، C(-2;0;1) ، B(2;3;0) ، A(-2;1;2) النقط $\left(O;\vec{i};\vec{j};\vec{k}\right)$ ستعامد و متجامد و متجانس نعتبر في الفضاء المنسوب إلى معلم متعامد و متجانس نعتبر في الفضاء المنسوب إلى معلم متعامد و متجانس نعتبر في الفضاء المنسوب إلى معلم متعامد و متجانس و المتعامد و متجانس المتعامد و متعامد و متعامد

AM = BM: ولتكن (P) مجموعة النقط M بحيث

. [AB] منتصف القطعة D النقطة D منتصف القطعة

2x+y-z-1=0: بين أن (P) هو المستوي الذي معادلته الديكارتية (P) هو المستوي الذي معادلته الديكارتية

AB]. حدد المعادلة الديكارتية لسطح الكرة (S)التي قطرها AB].

. 4. بين أن (P) يقطع (S) وفق دائرة يطلب تعيين مركزها و نصف قطرها .

(P) ويعامد المستويم (D) الذي يشمل النقطة C ويعامد المستوي (D) ويعامد المستوي (P)

(P) عين إحداثيات النقطة E نقطة تقاطع المستقيم (D) مع المستوي (6.

(D) استنتج المسافة بين النقطة A و المستقيم (D)

التمرين الرابع: (06.5 نقاط)

 $\left(O;\vec{i};\vec{j}
ight)$ نعتبر الدالة g المعرفة على IR بـ : IR المعرفة على IR با نعتبر الدالة البياني في معلم متعامد ومتجانس IR

 $\lim_{x\to +\infty} g(x)$ و فسر النتيجة هندسيا ثم ا $\lim_{x\to +\infty} g(x)$ احسب النتيجة هندسيا ثم

و نه من أجل كل عدد حقيقي $x: \frac{-e^{2x}}{(e^x+1)^2}$ ثم استنتج اتجاه تغير الدالة وشكل جدول تغيراتها $g'(x) = \frac{-e^{2x}}{(e^x+1)^2}$

IR على g(x) على 3

 $g(x) = \frac{1}{1+e^{-x}} - \ln(1+e^{-x}) - x$: $x = \frac{1}{1+e^{-x}}$ 3.4 define $g(x) = \frac{1}{1+e^{-x}} - \ln(1+e^{-x}) - x$: $x = \frac{1}{1+e^{-x}}$

 $+\infty$ بين أن المستقيم (Δ) ذو المعادلة y=-x+1 مقارب مائل للمنحنى (C) بجوار $\gamma=-x+1$

(C) ارسم (Δ) و (3)

 $\left(O;ec{i};ec{j}
ight)$ نعتبر الدالة f المعرفة على IR بـ : $\operatorname{IR}\left(e^{x}+1
ight)$ نعتبر الدالة f المعرفة على f المورفة على IR بالمعرفة على الدالة المعرفة على الدالة المعرفة على الدالة الدالة الدالة الدالة المعرفة على الدالة الدالة الدالة المعرفة على الدالة ا

fبین انه أجل کل عدد حقیقي x:x ثم استنتج اتجاه تغیر الداله f الداله f عدد حقیقی f ثم استنتج اتجاه تغیر الداله f

 $h(x) = -\ln(e^{-x} + 1) - (e^{-x} \ln(e^{x} + 1))$: IR المعرفة IR بالمعرفة 2.

f بين أن الدالة h هي دالة أصلية للدالة (

IR با استنتج اتجاه تغیر الداله h علی

ج) احسب مساحة الحيز المحدد بالمنحنى (C_f) ومحور الفواصل و المستقيمين اللذين معادلتيهما

 $x=\ln 2$ و $x=-\ln 2$

النجاح في بكالوريا جوان 2015 ﴿ مع تمنياتنا لكم بالتوفيق والنجاح في بكالوريا جوان 2015 ﴿