الموسم الدراسي: 2016/2015

المدة: 03 ساعات

ثانويات لحسيني محمد + طارق بن زياد +بضياف محمد المستوى: 3 ع ت

الاختبار الثاني في مادة الرياضيات

التمرين الأول:

 $Z_2=1$ -i , $Z_1=\sqrt{3}+i$ نعتبر العددين المركبين

1. اكتب العددين Z_1 و Z_2 على الشكل المثلثي ثم الشكل الآسي .

2. اكتب $\frac{Z_1}{Z_2}$ على الشكل الجبري ثم الآسي .

. $\sin\left(\frac{5\pi}{12}\right)$ و $\cos\left(\frac{5\pi}{12}\right)$ من المضبوطة لكل من منتنج القيم المضبوطة لكل من

 $\left(\frac{Z_1}{Z_2}\right)^{2016}$ احسب قيمة 4.

التمرين الثاني:

 $\left(O.\overset{
ightarrow}{i},\overset{
ightarrow}{j};\overset{
ightarrow}{k}
ight)$ في الفضاء المنسوب إلى معلم متعامد ومتجانس

D(-1;-1;-1) و C(1;1;1) و B(1;7;1) , A(7;1;1) و نعتبر النقط

.1

- اً بين أن النقط C , B , A تعين مستويا (P) ,ثم تحقق أن المعادلة الديكارتية للمستوي (C , C ,
 - (P) عمودي على المستقيم ((DO)عمودي على المستوي
 - ت عين تمثيلا وسيطيا للمستقيم (DO).
 - ث بين أن النقطة (B; 3; 3) هي المسقط العمودي للنقطة (C) على المستوي (C), وأنها مركز الدائرة (C) المحيطة بالمثلث (C).
 - [CD] المستوي المحوري للقطعة المستقيمة [CD] المستقيمة
 - x+y+4z -12=0 أ تحقق أن المعادلة الديكارتية للمستوي ($oldsymbol{Q}$) هي
 - (Q)ب عين إحداثيات Ω نقطة تقاطع المستقيم نقطة عين إحداثيات المستوي
 - $oldsymbol{ABCD}$. $oldsymbol{ABCD}$ الوجوه $oldsymbol{\Omega}$
 - ث بين أن المثلث ABC متقايس الأضلاع, ثم احسب حجم رباعي الوجوه ABCD
- $\left\|\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD}\right\| = 12\sqrt{3}$ مجموعة النقط M من الفضاء التي تحقق (S) مجموعة النقط القطاء التي تحقق
 - $3\sqrt{3}$ الكرة التي مركزها Ω ونصف قطرها أ بين أن (S) هي سطح الكرة التي مركزها
 - D , C , B , A اكتب معادلة ديكارتية لسطح الكرة (S) ,ثم تحقق أن (S) تشمل النقط D ,
 - ت حدد طبيعة تقاطع (S) مع (P)

التمرين الثالث:

$$g(x)=2x$$
 -1- $\ln x$: كمايلي g المعرفة على g المعرفة على g المعرفة على g

1. ادرس تغيرات الدالة $oldsymbol{g}$ ثم شكل جدول تغيراتها .

 $[0,+\infty]$ على المجال g(x) على استنتج إشارة .

$$0.1 \leq lpha \leq 0.3$$
 عيث $lpha \leq 0.3$ تقبل حلا أخر $lpha \leq 0.3$ وبين أن المعادلة $lpha \leq 0.3$ تقبل حلا أخر $lpha \leq 0.3$

f(0)=0 و $f(x)=x^2$ - $x\ln x$: كمايلي $f(x)=x^2$ و $f(x)=x^2$

 $\left(\overrightarrow{o.i;j}
ight)$ تمثيلها البياني في المستوي المنسوب المنسوب إلى معلم متعامد ومتجانس تروي

ا د احسب $\lim_{x\to 0} \frac{f(x)}{x}$ وفسر النتيجة هندسيا

. $\lim_{x\to +\infty} f(x)$ ب -احسب

 $f^{'}(x)=g(x):]0,+\infty[$ بين انه من اجل كل عدد حقيقي x من المجال $f^{'}(x)=g(x):]0,+\infty[$ ب - استنتج اتجاه تغير الدالة $f^{'}$, ثم شكل جدول تغيراتها .

. يطلب تعيينها Ω يطلب يعيينها و يين أن المنحني (C_f) يقبل نقطة العطاف

د۔ عین دون حساب $\lim_{x \to \alpha} \frac{f(x) - f(\alpha)}{x - \alpha}$ وفسر النتیجة بیانیا.

f(x)=x g(x) - x + 1]: اثبت أن

ب- احسب $f(\alpha)$ ثم استنتج حصرا له

4. اثبت أن المنحني (C_t) يقبل مماسين (T) و (T) ميل كل منهما يساوي 1 يطلب كتابة معادلتيهما.

 $\left(C_{f}
ight)$ و $\left(\mathbf{T}
ight),\left(\mathbf{T}
ight)$ و .5

بالتوفيق والنجاح في شهادة البكالوريا