3ع ت

فرض محروس رقم 01 الفصل الثالث

التمرين الأول (05 نقاط):

C(0,-2,-3), B(-3,-2,3), A(1,2,-1) الفضاء منسوب إلى معلم متعامد متجانس $(o,\vec{i},\vec{j},\vec{k})$ نعتبر النقط

- أ) بين أن النقط C,B,A ليست في إستقامية
- (ABC) بين أن الشعاع \vec{n} (2,-1,1) شعاع ناظمي للمستوي
- . (ABC) عمودي على المستوي (P) ذو المعادلة x + y z + 2 = 0
 - $\{(A,1),(B,-1),(C,2)\}$ نرمز به G إلى مرجح الجملة المثقلة نرمز به G
- (P) عين إحداثيات النقطة G ثم بين أن المستقيم (CG) عمودي على المستوي (أ
 - ب) أعط تمثيلا و سيطيا للمستقيم (CG)
 - (CG) عين إحداثيات النقطة H نقطة تقاطع المستوي (P)و المستقيم
 - $\|\overrightarrow{MA} \overrightarrow{MB} + 2\overrightarrow{MC}\| = 12$: عين المجموعة (S) مجموعة النقط M من الفضاء حيث : Φ
 - (S) عين الطبيعة و العناصر المميزة لتقاطع المستوي (P) و المجموعة

التمرين الثاني (04 نقاط):

 $U_{n+1} = 3 - \frac{9}{4U_n}$: n عدد طبيعي $U_0 = 3$: يلي المتتالية المعرفة بما يلي : $U_0 = 3$ ومن أجل كل عدد طبيعي

- $\frac{3}{2} \prec U_n \leq 3$: n برهن بالتراجع أنه من أجل كل عدد طبيعي $\mathbf{0}$
- . متقاربة (U_n) متناقصة ، ثم إستنتج أن المتتالية (U_n) متقاربة .
 - $V_n = \frac{2}{2U_n 3}$: n نضع من أجل كل عدد طبيعي **3**

أ - بين أن المتتالية (V_n) حسابية محددا أساسها و حدها الأول

 $\lim_{n\to +\infty} U_n$: بدلالة n ثم أحسب U_n و U_n بدلالة

التمرين الثالث (04) نقاط):

3as.ency-education.com

- . حل في \Box المعادلة : $z_1 = 2\sqrt{3}z + 4 = 0$ الحلين حيث $z_2 = 1$ الحلي موجب $z_3 = 1$
 - . على الشكل ألأسي $\frac{z_1}{z_2}$ على الشكل
 - . عين قيم العدد الطبيعي n بحيث يكون العدد $\left(\frac{z_1}{z_2}\right)^n$ تخيليا صرفا n
 - نعتبر النقط C,B,A التي لواحقها z_2 , z_1 التي لواحقها C,B,A على الترتيب

? ماذا تستنتج ، ماذا أحسب أحسب أ
$$\frac{z_2-z_3}{z_2-z_1}$$

. C عين زاوية ومركز ونسبة التشابه المباشر الذي يحول Aإلى B و B

التمرين الرابع (07 نقاط):

$$f(x) = 1 - \frac{\ln(x^2)}{x}$$
 : بالمعرفة على * المعرفة على أ

 $(o; \vec{i}; \vec{j})$ معلم متعامد و متجانس (e) تمثيلها البياني في معلم متعامد و متجانس

- . احسب نهایات الدالة f عند حدود مجموعة التعریف
- $f'(x) = \frac{\ln(x^2) 2}{x^2}$: $= \frac{1}{x^2}$ من اجل کل عدد حقیقی x من اجل کل عدد عقیقی x
 - استنتج اتجاه تغير الدالة f ثم شكل جدول تغيراتها.
 - y = 1 ادرس وضعية المنحني (e) بالنسبة للمستقيم ذو المعادلة y = 1
 - $-1 < \alpha < -\frac{1}{2}$ بين أن المعادلة f(x) = 0 تقبل حلا واحدا α حيث $\mathbf{6}$
- y=1 و $x=\alpha$ ، x=-1 احسب $A(\alpha)$ مساحة الحيز المحدد بالمنحني (\mathcal{C}) و المستقيات التي معادلاتها $A(\alpha)$

$$A(\alpha)$$
 بین أن $A(\alpha) = \frac{\alpha^2}{4}$ شم استنتج حصرا لـ α

کے دی انہی دی بالتوفیق للجمیع في شهادة

بكالوريا 2017

3as.ency-education.com