الجممورية الجزائرية الديمقراطية الشعبية

ثانوية شمداء أحداث براق 1956 كانوية عملي 2017

وزارة التربية الوطنية المتحديبي

الشعبة : غلمه تجريبية

المحة: 30 ساو 30 ح

اختبار في ماحة: الرياضيات

على المترشح أن يختار أحد الموضوعين التاليين:

الموضوع الأول

 $(x = 2 - \frac{1}{2}t)$ المعرين الأول : $(x = 2 - \frac{1}{2}t)$ المستقيم $(x = 2 - \frac{1}{2}t)$ المعرف بالتمثيل الوسيطي $(x = 2 - \frac{1}{2}t)$ نعتبر في الفضاء المنسوب الى معلم م ، م $(x = 2 - \frac{1}{2}t)$ المستقيم $(x = 2 - \frac{1}{2}t)$ المعرف بالتمثيل الوسيطي $(x = 2 - \frac{1}{2}t)$ حيث $(x = 2 - \frac{1}{2}t)$ وسيط حقيقي $(x = 2 - \frac{1}{2}t)$

والنقطتين (d) من (d) والنقطة (d) والنقطة (d) دات الفاصلة 1.

- أجب بصح أو خطأ مع التبرير في كل حالة مما يلي :

- 1. المستقيم (d) يوازي المحور (0, j).
- x+3z-5=0 : هي المار من النقطة A والعمودي على المستقيم (d) هي . 2
 - 3. احداثیات النقطة C هي (1،1،2).
 - 4. قيس الزاوية الهندسية \widehat{ABC} يساوي $\frac{\pi}{3}$ راديان.

التمرين الثاني: (05 ن)

1- أ) حل في C المعادلة : C = 2z + 2 = 0 ، ثم اكتب الحلول على الشكل المثلثي.

 $(-iz+3i+3)^2$ -2(-iz+3i+3) + 2 = 0 حلول المعادلة: $(-iz+3i+3)^2$ -2 $(-iz+3i+3)^2$

2- نعتبر في المستوي المركب المنسوب الى م.م.م $(0, \vec{t}, \vec{j})$ النقط A, B, C ذات اللواحق على الترتيب:

$$Z_{\rm C} = 2Z_{\rm B} \cdot Z_{\rm B} = \bar{Z}_{\rm A} \cdot Z_{\rm A} = 1 + i$$

أ. علم النقط C,B,A ثم بين أنها تنتمي الى دائرة Γ) مركزها النقطة I ذات اللاحقة S ونصف قطرها S .

IAC ب. أحسب العدد $\frac{Z_C-3}{Z_A-3}$ ، ثم استنتج طبيعة المثلث ب

. $2\overrightarrow{\text{IC}}$ صورة النقطة 0 بالانسماب الذي شعاعه E .

 $\frac{\pi}{2}$ د. عين لاحقة النقطة D صورة النقطة E بالدوران الذي مركزه D وزاويته

ه. بين أن المستقيمين (AB) و (CD) متعامدان.

صفحة 1 من 4

3as.ency-education.com

التمرين الثالث: (04)

.
$$u_{n+1}=5-rac{4}{u_n}$$
 و $u_0=2$ و الأول $u_0=0$ و المحدية معرفة على $u_0=0$

- . لاء على المسب الم
- $2 \leq u_{\rm n} \leq 4$: أ- برهن بالتراجع أن من أجل كل عدد طبيعي n فإن أن المتتالية $(u_{\rm n})$ متزايدة ، ثم استنتج أنها متقاربة .
 - $4 u_{n+1} \le \frac{4 u_n}{2}$ فإن n فإن عدد طبيعي عدد طبيعي (3

$$0 \leq 4-u_{
m n} \leq ig(rac{1}{2}ig)^{n-1}$$
: فإن عدد طبيعي فإن عدد عدد عبد عدد عبد استنتج أنه من أجل كل عدد طبيعي

ج - استنتج نهاية المتتالية (un).

التمرين الرابع: (07 ن)

- $g(x)=x^2-2\ln x$: كما يلي]0, $+\infty$ المعرفة على المجال].
 - 1. أدرس تغيرات الدالة g وشكل جدول تغير اتها.
 - g(x) ما استنتج اشارة g(1) عمر استنتج اشارة .2
- اا. نعتبر الدالة f المعرفة على المجال $]0,+\infty[$ كما يلي $\frac{x}{x}+\frac{1+\ln x}{x}$ وليكن (C) تمثيلها البياني في معلم متعامد ومتجانس (C,C).
 - 1- أحسب نهايات الدالة f عند ∞ + وعند 0.
 - 2- أ) بين أن الدالة المشتقة f' لها نفس اشارة g ، ثم استنتج اتجاه تغير الدالة f وشكل جدول تغير اتها.
- 3- بين أن المستقيم (Δ) ذو المعادلة $y=\frac{x}{2}$ مقارب مائل لـ (C) عند $\infty+$ ، ثم أدرس وضعية (C) بالنسبة الى (Δ).
 - 4- أ) بين أنه توجد نقطة وحيدة A من (C) يكون المماس (T) عندها موازيا (C).
 - ب) عين إحداثيتي النقطة A ثم أكتب معادلة لـ (T).
 - 5- بين أن المعادلة f(x)=0 تقبل حلا وحيدا ∞ على المجال f(x)=0 ، ثم تحقق أن: $0.34 \leq \propto \leq 0.35$
 - 6- أرسم كل من (Δ)، (Τ)، و (C).
 - 7- أحسب مساحة الحيز المستوي المحدد بالمنحنى (C) والمستقيم (Δ) والمستقيمين اللذين معادلتيهما :

$$x = e \ \hat{g} \ x = \frac{1}{e}$$

انتهى الموضوع الأول

الصفحة 2 من 4

3as.ency-education.com

الموضوع الثاني

التمرين الأول : (05 ن)

 u_0 متتالية حسابية متناقصة تماما حدها الأول u_0 وأساسها u_0 (1

$$u_1^2 + u_2^2 + u_3^2 = 116$$
 و $u_1 + u_2 + u_3 = 18$ أ. عين u_2 و علما أن $u_2 + u_3 = 18$

n بدلالة u_n بدلالة

ت. استنتج بدلالة
$$n$$
 المجموع : $S_n = u_0 + u_1 + \cdots + u_n$ ، ثم عين العدد الطبيعي n بحيث $S_n = -210$.

. $V_{
m n}=e^{u_n}$: كما يلي $(V_{
m n})$ (2

أ. بين أن (V_n) متتالية هندسية يطلب تعيين أساسها وحدها الأول .

$$P_{\mathrm{n}}=v_0 imes v_1 imes ... imes v_n$$
 والجداء $T_{\mathrm{n}}=v_0+v_1+\cdots+v_n$ والجداء $T_{\mathrm{n}}=v_0+v_1+\cdots+v_n$ والجداء $T_{\mathrm{n}}=v_0+v_1+\cdots+v_n$ والجداء $T_{\mathrm{n}}=v_0+v_1+\cdots+v_n$

 $\lim_{n \to +\infty} P_n$ $\lim_{n \to +\infty} T_n$

التمرين الثاني: (04)

معلم متعامد ومتجانس للفضاء. $(O; \overrightarrow{OA}. \overrightarrow{OB}. \overrightarrow{OC})$

1) أ- عين احداثيات النقطة G مركز ثقل المثلث ABC.

ب- بين أن المستقيم (OG) عمودي على المستوي (ABC).

ج- استنتج معادلة ديكارتية للمستوي (ABC)

د- عين تمثيلا وسيطيا للمستوى (ABC)

(2) لتكن النقطة D(1;0;1) والنقطة H المسقط العمودي للنقطة D(1;0;1) على

أ. عين تمثيلا وسيطيا للمستقيم (DH) ، ثم استنتج احداثيات النقطة H.

ب. حدد طبيعة المثلث OGH.

التمرين الثالث: (04)ن)

$$Z_3 = \frac{Z_1}{Z_2}$$
 , $Z_2 = \frac{\sqrt{2} - i\sqrt{2}}{2}$, $Z_1 = \left(\frac{\sqrt{3} + i}{2}\right)^4$: is in the content of $Z_3 = \frac{Z_1}{Z_2}$, $Z_2 = \frac{\sqrt{2} - i\sqrt{2}}{2}$

 $Z_3 \cdot Z_2 \cdot Z_1$: أ. أكتب على الشكل المثلثي كل من الأعداد

 Z_3 عين الشكل الجبري للعدد

 $\sin\frac{11\pi}{12}$ و $\cos\frac{11\pi}{12}$ و $\cos\frac{11\pi}{12}$

 Z_{3}^{2017} أحسب العدد المركب

الصفحة 3 من 4

3as.ency-education.com

2) في المستوي المركب المنسوب الى المعلم المتعامد والمتجانس $(0,\vec{t},\vec{j})$ نعتبر التحويل النقطي r الذي يرفق بكل نقطة M من المستوي ذات اللاحقة Z النقطة M ذات اللاحقة Z'=(1+i)Z+1 عين طبيعة التحويل r وعناصره المميزة.

r بالتحويل A ، عين لاحقة صورة النقطة A بالتحويل r

التمرين الرابع: (07 ن)

- $c b , a يحتبر <math>g(x) = ax + b + rac{c}{x+1}$ بالعبارة : $\mathbb{R} \{-1\}$ حيث $g(x) = ax + b + rac{c}{x+1}$ بالعبارة : $g(x) = ax + b + rac{c}{x+1}$
- عين الأعداد a و a بحيث يشمل a المبدأ a ويقبل عند النقطة a و a مماسا يوازي حامل محور الغواصل.
- اا. نعتبر الدالة f المعرفة على $\{1\}$ $\mathbb{R} \{1\}$ بالعبارة : $f(x) = \frac{x^2}{x+1}$ و f(x) تمثيلها البياني في المعلم السابق .
- 1) أ- أحسب نهايات الدالة f عند حدود مجالات مجموعة تعريفها مُبينا المستقيم المقارب للمنحنى (C_f) الموازي لحامل محور التراتيب .
 - $f(x) = x 1 + \frac{1}{x+1}$: فإن $\mathbb{R} \{-1\}$ من (x 1) كل كل كل كل من أجل كل (x 1)
 - ج استنتج أن المنحنى (C_r) يقبل مستقيما مقاربا مائلا (Δ) ، يطلب تعيين معادلة له.
 - C_f د حدد الوضع النسبي للمنحنى C_f) والمستقيم
 - 2) أدرس اتجاه تغير الدالة f ، ثم أنشئ جدول تغير اتها .
 - (C_f) بين أن النقطة W(-1,-2) هي مركز تناظر للمنحنى
 - . أرسم كلا من (Δ) و (C_f) في المعلم السابق (4
 - 5) أحسب بالسنتمتر مربع ، مساحة الحيز المحدد بالمنحنى (C_f) والمستقيم (Δ) والمستقيمين اللذين معادلتيهما x=e-1 و x=0
 - $x^2 mx m = 0$ ناقش بيانيا وحسب قيم الوسيط الحقيقي m عدد وإشارة حلول المعادلة (6

نتمنى لكم التوفيق والنجاح في شهادة البكالوريا

انتهى الموضوع الثاني

الصفحة 4 من 4