ثانوية العلامة المختار بن بلعمش

المسوسم السدراسي: 2017 / 2018

المستوى: 03علوم تجريبية

المدة: 03 ساعات و نصف

اختبار الفصل الثاني في مادة الرياضيات

على المترشح أن يختار أحد الموضوعين الموضوع الأول

﴿ التمرين الأول: ۞۞۞(44 نقاط)

من مترشحي قسم $\mathbf{0}$ ع ت يعملون بجد خلال السنة الدراسية $\frac{3}{4}$

 $\frac{2}{10}$ احتمال نجاح مترشح یعمل بجد هو $\frac{9}{10}$ و احتمال نجاح مترشح لم یعمل بجد

نقول عن مترشح أنه مفاجأة إذا عمل بجد و لم ينجح أو نجح ولم يعمل بجد

-نعتبر الحوادث التالية:

المترشح يعمل بجد، A المترشح ناجح و S المترشح مفاجأة T

نختار عشوائيا مترشح من هذا القسم

1)- انقل و أكمل شجرة الإحتمالات المقابلة

2)- أحسب احتمال الحوادث : $T \cap A$ ، $T \cap \overline{A}$ ، $T \cap A$ أن يكون المترشح ناجحا ؟

4)- علما أن المترشح ناجحا ما احتمال أن يكون عمل بجد . 5)- بين أن احتمال S هو S هو 0.125 .

التمرين الثاني: © ⊕ ⊕ التمرين الثاني: ⊕ ⊕

$$P(z) = z^3 - 5z^2 + 8z - 6$$
: حيث $P(z)$ عثير حدود (1)- ليكن في

$$P(z)=0$$
 : جدر لـ $P(z)=0$ جدر لـ (۱). بـ)- حل في $z_0=3$ المعادلة $z_0=3$

$$\|\vec{u}\|=2cm$$
: الوحدة ، (o,\vec{u},\vec{v}) الوحدة ، المستوي المركب المنسوب إلى معلم متعامد و متجانس

$$z_I=3$$
 ، $z_C=2z_B$ ، $z_B=\overline{z_A}$ ، $z_A=1+i$: و I لواحقها على الترتيب C ، B ، A : لتكن النقط C ، B ، A

أ)- أحسب
$$|z_A-z_I|$$
 ، $|z_B-z_I|$ ، $|z_B-z_I|$ ، ثم إستنتج أن النقط C ، B ، B ، تنتمي إلى نفس الدائرة يطلب تعيين مركزها و نصف قطرها .

.
$$IAC$$
 على الشكل المثلثي، ثم إستنتج طبيعة المثلث على الشكل المثلث ب)- أكتب العدد المركب $\frac{z_C-z_I}{z_A-z_I}$

ج)- أكتب
$$z_A$$
 على الشكل الأسي ، ثم عين قيم العدد الطبيعي n حتى يكون $L=\left(rac{z_A}{\sqrt{2}}
ight)^n$ عددا تخيليا صرفا

الصفحة: 10 / 04

- نعتبر الدالة f المعرفة على المجال $[0,+\infty[$ ب] ب $[0,+\infty[$ بالوثيقة البياني كما هو موضح في الوثيقة الوثيقة المعرفة على المجال المعرفة على المحال المرفقة. . $U_{n+1}=f\left(U_n
ight)$: n عدد طبيعي $U_0=3$ على المعرفة على $U_0=3$ على المعرفة على $U_0=3$ أ)- مثل الحدود U_1 ، U_2 و U_2 على محور الفواصل مستعينا بالمنحنى C_f و المنصف الأول في الوثيقة المرفقة ب)- ضع تخمينا حول اتجاه تغير المتتالية $\left(U_{n}
ight)$ و تقاربها . $\frac{3}{2} \prec U_n \leq 3$: n ج. برهن بالتراجع انه من اجل كل عدد طبيعي ج. د)- ادرس اتجاه تغیر المتتالیة $\left(U_{n}\right)$ ، ثم استنتج أنها متقاربة د . $V_n = \frac{2}{2II-3}$: بنعرف على \square المتتالية (V_n) ب ر)- بين ان (V_n) متتالية حسابية أساسها $r=rac{2}{2}$ ، ثم عين حدها الأول . $\lim U_n$: بير عن V_n بدلالة n ، ثم بدلالة n ، ثم بدلالة الم <u>(06 نقاط)</u> . $g(x)=1+(1-x)e^{-x+2}$: بالجزء الأول: $g(x)=1+(1-x)e^{-x+2}$. بالجزء الأول: ودالة للمتغير الحقيقي x معرفة على 1)- أدرس تغيرات الدالة ي . $g(x) \ge 0$: \square من أجل كل x من أجل عل (2) . $f\left(x\right)=x-1+xe^{-x+2}$: ب Γ دالة للمتغير الحقيقي Γ معرفة على الجزء الثانى Γ دالة للمتغير الحقيقي Γ $\left(C_{f}
ight)$ منحنى الدالة f في المعلم المتعامد و المتجانس منحنى الدالة من الدالة منحنى الدالة من الدالة منحنى الدالة منحنى الدالة من الدالة من الدالة من الدالة منحنى الدالة من . $\lim_{x \to +\infty} f(x)$ · $\lim_{x \to -\infty} f(x)$: (1) f بين من أجل كل x من g(x)=g(x) . ثم استنتج إشارة f'(x)=g(x) . ب y = x - 1: assume x = x - 1

 $\left(C_{f}
ight)$ بين أن النقطة $I\left(2,3
ight)$ هي نقطة إنعطاف المنحنى (3

. يوازي المستقيم (Δ)، يطلب تعيين معادلته الديكارتية (T) يقبل مماسا (T) يقبل مماسا (T) يقبل مماسا (T)

. 0 < lpha < 0.2 : حيث أن المعادلة $f\left(x\right) = 0$ تقبل حلاً وحيداً α

. (Δ) و (Δ) (T) انشئ (Δ) و (Δ)

انتهى الموضوع الأول

الصفحة: 02 / 04

- يحتوي كيس على 4 كرات حمراء مرقمة من 1 إلى 4 و 4 كرات بيضاء مرقمة من 5 إلى 8 و كرتين سوداويتين تحملان الرقمين 9 و 10

- نسحب من هذا الكيس كرتين على التوالي و بدون إرجاع ، أحسب احتمال الحوادث التالية :
 - د)- الحادثة $A \ll$ الحصول على كرتان تحملان رقمين فرديين \gg
 - \gg الحادثة $B \gg B$ الحصول على كرتان من نفس اللون
 - (3) هل الحادثتان A و A مستقلتان (3)
 - $\gg c$ الحصول على كرتان من لونين مختلفين \sim
 - 5)- الحادثة $D \gg D$ الحصول على كرتان من لونين مختلفين و تحملان رقمين فرديين D
 - 6)- علما ان الكرتين من لونين مختلفين ، ما احتمال أن يحملان رقمين فرديين ؟

﴿ التمرين الثاني: ۞۞۞ ------ (55) نقاط)

. r متتالية حسابية متناقصة معرفة على u_0 بحدها الأول وأساسها u_n . 1

$$\begin{cases} u_1 + u_2 + u_3 = 24 \\ u_1^2 + u_2^2 + u_3^2 = 210 \end{cases}$$
 i.e. $t = u_0$

 $S_n' = u_0 + u_1 + \cdots + u_n$ ب.اكتب u_n بدلالة n ثم احسب المجموع:

ين نعتبر المتتالية (v_n) المعرفة كما يلي: $v_n = e^{14-3n}$ يلي: 2.

أ. بين أن (v_n) متتالية هندسية يطلب تعيين أساسها q وحدها الأول ثم احسب ماذا تستنتج ؟

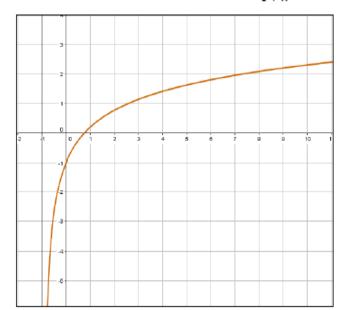
 $p_n = v_0 \times v_1 \times \cdots v_n$ أحسب الجداء $S_n = v_0 + v_1 + \cdots v_n$ ب. احسب المجموع:

 $\lim_{n\to +\infty} p_n$ جـ. احسب u_{2018} ثم u_{2018} و

التمرين الثالث:۞۞۞ ------(05 نقاط)

 $(z-\sqrt{2}+7i\sqrt{2})(z^2-2\sqrt{2}z+4)=0...$ نعتبر في مجموعة الاعداد المركبة $(z-\sqrt{2}+7i\sqrt{2})(z^2-2\sqrt{2}z+4)=0...$

- 1) حل في © المعادلة (1) .
- - $\left(rac{z_A}{2}
 ight)^{2018} + \left(rac{z_B}{2}
 ight)^{2018}$: اكتب العدد المركب إلى الأسي ، ثم استنتج الشكل الأسي ، ثم استنتج الشكل الجبري للعدد المركب


الصفحة: 30 / 04

(3)- أكتب على الشكل الجبري العدد المركب $\frac{Z_C-Z_B}{Z_A-Z_B}$ ، ماذا نستنتج $\frac{Z_C-Z_B}{Z_A-Z_B}$

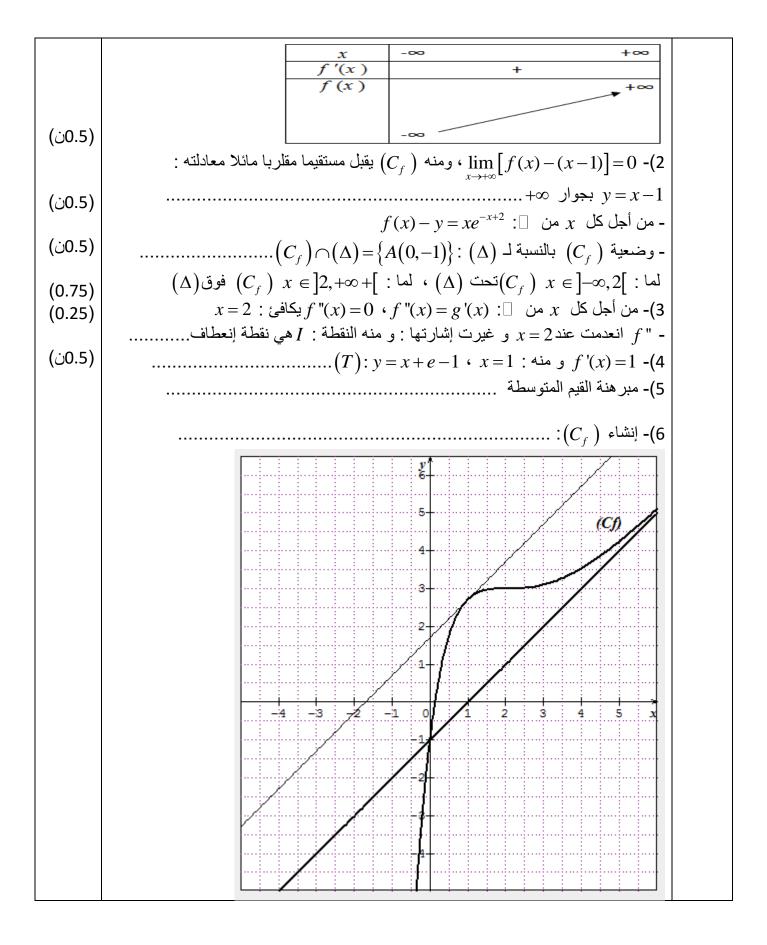
. مربع OADB وجد Z_D لاحقة النقطة D حتى يكون الرباعي

$$g(x) = -\frac{1}{1+x} + \ln(1+x)$$
 : -1] -1 ; $+\infty$ [$+\infty$] -1 $+\infty$] -1 $+\infty$ [$+\infty$] -1 $+\infty$] -1

- و (C_g) تمثيلها البياني في المستوي المنسوب الى المعلم المتعامد والمتجانس (i,j) (الشكل المقابل)،
 - بقراءة بيانية شكل جدول تغيرات ج.
- و في g(x)=0 بين أن المعادلة g(x)=0 تقبل حلا وحيد g(x)=0 المجال g(x)=0 ثم استنتج إشارة g(x)=0 .
- الدالة المعرفة على المجال $-1;+\infty$ كما يلي f كما يلي $f(x)=1-x+x.\ln(1+x)$
 - و $\binom{C_f}{i}$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس $\binom{C_j}{i}$
- , $\lim_{x \to +\infty} f(x)$ أحسب أحسب ؛ أوسر النتيجة هندسيا بالمسب أحسب أf(x) أحسب (1
- f الدالة f'(x) = g(x) : $-1;+\infty$ من المجال f من المجال عدد حقيقي f من المجال عدد حقيقي f من المجال f من المجال عدد حقيقي f من المجال f من المجال f
 - . 0 أ-أكتب معادلة المماس (Δ) للمنحنى (C_f) عند النقطة ذات الفاصلة (3

$$.(\Delta)$$
 و (C_f) ثم أنشئ $f(\alpha)$ ب أشبت حصر الم $f(\alpha)$ ؛ أستنتج حصر الم $f(\alpha)$ ثم أنشئ $f(\alpha)$

. $1 + x \cdot \ln(1 + x) - m = 0$ ناقش حسب قيم العدد الحقيقي عدد و إشارة حلول المعادلة (4


بالتوفيق في شهادة بكالوريا 2018

الصفحة: 04 / 04

الموضوع الأول

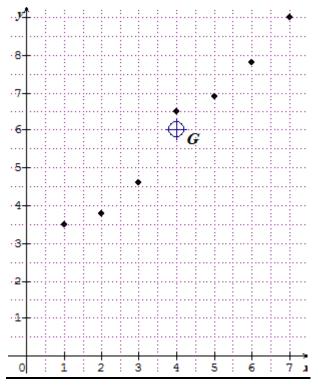
العلامة	عناصر الإجابة	<u>رقـم</u>
		التمريان ن التمريان ن الأول الأول
(05 ن)	1)- الشجرة	التمري
		<u>ن</u> الأول
		<u>04</u> ن
(0.5)		
(0.5)		
(ن0.5)	3 0 27	
(0.5)	$P(T \cap A) = \frac{3}{4} \times \frac{9}{10} = \frac{27}{40} = 0.675$ -(2	
(01 ن)	$P(T \cap \overline{A}) = \frac{3}{4} \times \frac{1}{10} = \frac{3}{40} = 0.075$	
(0.5)	$P(\overline{T} \cap A) = \frac{1}{4} \times \frac{2}{10} = \frac{2}{40} = 0.05$	
	$P(A) = P(T \cap A) + P(\overline{T} \cap A) = \frac{27}{40} + \frac{2}{40} = \frac{29}{40} = 0.725$	
	-(3)	
	$P_A(T) = \frac{P(T \cap A)}{P(A)} = \frac{\frac{27}{40}}{\frac{29}{40}} = \frac{27}{29} = 0.931$	
	$P(S) = P(\overline{T} \cap A) + P(T \cap \overline{A}) = \frac{3}{40} + \frac{2}{40} = \frac{1}{8} = 0.125$	
(0.25)	$P(3) = P(1 \land A) + P(1 \land A) = \frac{1}{40} + \frac{1}{40} = \frac{1}{8} = 0.123$ -(5)	*
(0.25)	P(3) = 0 - (1 - (1))	التمري <u>ن</u> الثاني <u>05 ن</u>
(0.5)	$(\Delta = -4)$ $z^2 - 2z + 2 = 0$ أو $z - 3 = 0$: يكافئ $P(z) = 0$	<u>50 ن</u>
(0.75)	$ z_A - z_I = 1 + i - 3 = -2 + i = \sqrt{5} -(2)$	
(0.5)	$ z_B - z_I = 1 - i - 3 = -2 - i = \sqrt{5}$	
(33.3)	$ z_C - z_I = 2 - 2i - 3 = -1 - 2i = \sqrt{5}$	

(0.5)	ومنه النقاط: C ، B ، A تنتمي إلى الدائرة التي مركزها I و نصف قطرها: C ، B ، A	
(0.75)	$\frac{z_C - z_I}{z_A - z_I} = i = \cos\frac{\pi}{2} + i\sin\frac{\pi}{2} -(-1)$	
(0.5ن)	-	
	IAC ومنه المثلث IAC قائم في I و متساوي الساقين ($IC = IA$ ، $i = e^{irac{\pi}{2}}$	
(0.5ن)	$z_A = \sqrt{2} \cdot e^{i\frac{\pi}{4}} - (\Rightarrow$	
	: ومنه، $rac{\pi n}{4}=rac{\pi}{2}+k\pi \left(k\in\square\; ight)$: ومنه، $L=\left(rac{z_A}{\sqrt{2}} ight)^n=e^{irac{\pi n}{4}}$	
	$n = 2 + 4k (k \in \square)$	
(0.5)	1)- أ) - تُمثيل الحدود	
		التمري <u>ن</u> الثالث <u>05 ن</u>
		<u>5 55</u>
(0.5)	$(U_{_n})$ متناقصة على \square ، و $(U_{_n})$ متقاربة $(U_{_n})$	
(0.5)	` جـ)- البرهان بالتراجع	
(00.5)	$U_{n+1}-U_n=rac{-ig(2U_n-3ig)^2}{4U_n}$: \square من أجل كل n من أجل كا n	
(ن0.5) (ن0.5)		
(0.5)	و منه (U_n) متناقصة على \square	
(0.5)		
	$V_{n+1}=rac{4U_n}{6U_n-9}$: \square من أجل كل n من أجل $(2-1)$	
(0.5)	$V_{n+1} - V_n = \frac{4U_n}{6U_n - 9} - \frac{2}{2U_n - 3} = \frac{4U_n - 6}{6U_n - 9} = \frac{2(2U_n - 3)}{3(2U_n - 3)} = \frac{2}{3}$	
(00.5)	n n n n	
(01)	$V_0=rac{2}{3}$ و منه $V_0=rac{2}{3}$ و حدها الأول $V_0=rac{2}{3}$ و منه $V_0=rac{2}{3}$	
(0.5)	$U_n = \frac{3n+6}{2n+2}$ ، $V_n = \frac{2}{3}n + \frac{2}{3}$: \square من أجل كل n من أجل كل	
	$\lim_{n\to+\infty} U_n = \lim_{n\to+\infty} \frac{3n}{2n} = \frac{3}{2}$	
(0.5)		التمرين
(ن.0.5)	$\lim_{x\to +\infty} g(x) = 1 \lim_{x\to -\infty} g(x) = +\infty -(1 \frac{1}{x} \frac{1}$	<u>الرابع</u> 06 ن
(0.5 <i>)</i> (0.25)	g متزايدة على المجال g ، $[2,+\infty]$ متناقصة على المجال g	<u>5 50</u>
	$g(x) \geq 0$ قيمة حدية صغرى) و منه من أجل كل x من $g(x) \geq 0$	
(0.5)	$\lim_{x \to +\infty} f(x) = +\infty \lim_{x \to -\infty} f(x) = -\infty -(1)$	
(0.75)	g(x) بـ $f'(x)$ قابلة للإشتقاق على $g(x)$: $g(x)$ ومنه : إشارة $f'(x)$ من إشارة $f'(x)$	
(0.5)	جدول تغیرات الدالة f:	

الموضوع الثاني

(ن٥.5) **3as.ency-education.com**
$$P(A) = \frac{20}{90} = -(1)$$

(0.5)	$P(B) = \frac{A_4^2 + A_4^2 + A_2^2}{90} = \frac{26}{90}$	<u>ن</u> ۱۰				
(01)	90 90	الاو <u>ن</u> 04 <u>ن</u>				
(0.5)	$P(A \cap B) \neq P(A) \times P(B)$ $P(A \cap B) = \frac{A_2^2 + A_2^2}{90} = \frac{4}{90}$					
(0.5)	$P(C) = 1 - P(B) = 1 - \frac{26}{90} = \frac{64}{90}$					
(50.5)						
(0.5)	$P(D) = P(C \cap A) = \frac{2(A_2^1 \times A_2^1 + A_2^1 \times A_1^1 + A_2^1 \times A_1^1)}{90} = \frac{16}{90}$					
	1.0 /					
	$P_{C}(A) = \frac{P(C \cap A)}{P(A)} = \frac{\frac{16}{90}}{64/20} = \frac{16}{64}$					
	/ / /90					
	(1)- أ)- باستعمال المعادلة الأولى نتحصل على $U_2=8$ (الوسط الحسابي) $U_2=8$ (المعادلة الأولى نتحصل على $U_2=8$) نه نام	التمري				
(01ن)	: بتعويض U_2 بما تساويه في المعادلة الثانية نجد: $U_2=210=(8-r)^2+8^2+(8+r)^2=210$ و منه $V_0=14$ و منه $V_0=14$ و منه $V_0=14$	<u>ن</u> الثاني				
(0.5)	$U_n = 14 - 3n$: \square من أجل كل n من \square .	<u>05 ن</u>				
(0.5)	$S'_n = \frac{(n+1)}{2}(14+14-3n) = \frac{-3n^2+25n+28}{2}$: \square من أجل كل n من أجل كل n					
(0.25)						
(0.5ن) (0.5ن)	: من أجل كل n من $V_{n+1}=e^{14-3n-3}=e^{-3}V_n$ و منه : م هـ أساسها $V_{n+1}=e^{14-3n-3}=e^{-3}V_n$ و منه : م					
(0.5) (0.5ن)	$V_0=e^{14}$ و حدها الأول : $V_0=e^{14}$ و حدها الأول : $q=e^{-3}$ المتتالية $V_n=0$ متقاربة المتتالية $V_n=0$					
(0.5ن)	$n \to +\infty$					
(0.75)	$S_n = \frac{e^{14}}{e^{-3}-1} \left(e^{-3n-3}-1\right)$: \square من أجل كل n من أجل كل n من أجل كا					
	$ \lim_{n \to +\infty} P_n = 0 \cdot \lim_{n \to +\infty} S_n = \frac{e^{14}}{1 - e^{-3}} \cdot U_{2018} = 14 - 3(2018) = -6040 - (-5) $					
(:4.5)	: و منه $\Delta = -8$ یکافئ : $\Delta = -8$ رو منه $z - \sqrt{2} + 7i\sqrt{2} = 0$ و منه (1) (1) یکافئ : $\Delta = -8$	التمري				
(1.5ن)	$S = \left\{ \sqrt{2} - 7i\sqrt{2}, \sqrt{2} - i\sqrt{2}, \sqrt{2} + i\sqrt{2} \right\}$	<u>ن</u> الثالث				
(0.5ن) (01ن)	$ \left(\frac{z_A}{2}\right)^{2018} = e^{i\frac{2018\pi}{4}} = e^{i\frac{\pi}{2}} = i z_A = 2e^{i\frac{\pi}{4}} - (1 - 2)^{-1} $	<u>ن 05</u>				
(301)						
(01)	$\left(rac{z_A}{2} ight)^{2018} + \left(rac{z_B}{2} ight)^{2018} = i - i = 0$: و منه $\left(rac{z_B}{2} ight)^{2018} = e^{-irac{2018\pi}{4}} = e^{-irac{\pi}{2}} = -i$					
(01)	و منه : النقاط C ، B ، A و منه : النقاط $z_C - z_B = -3 \in \Re$ -(3) و منه : النقاط $z_A - z_B$					
	الدينا $i = \frac{Z_B}{Z_A} = i$ ومنه المثلث : قائم في i ومتساوي الساقين .					
	$z_D=2\sqrt{2}$: مربع معناه : $\overrightarrow{OA}=\overrightarrow{BD}$ ، $\overrightarrow{OA}=\overrightarrow{BD}$ ومنه : $OADB$					
(0.5ن)	ا)- 1)- جدول تغيرات الدالة g :	التمري				
		ن ،				
		الرابع 06 ن				
	3as.ency-education.com					

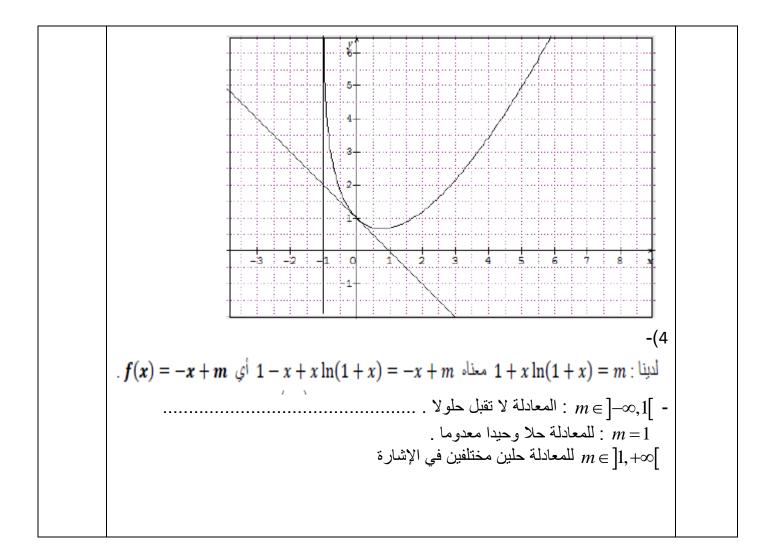

- الموضوع الثانى:

التمرين الأول: (03 نقاط)

(01).....
$$S = \{e^4, e^{-7}\}$$
 : و منه $t = \ln x$: نضع $D =]0, +\infty[$ -(2

(01).....
$$S = \{10^4, 10^{-7}\}$$
 : و منه $t = \log x$: نضع $D =]0, +\infty[$ -(3

التمرين الثانى: (05 نقاط)


x_{i}	y_i	$x_i.y_i$	$(x_i - \overline{x})^2$	$\frac{-}{x} = \frac{28}{-} = 4$
1	3.5	3.5	9	7
2	3.8	7.6	4	$\frac{-}{y} = \frac{42.1}{-} = 6.014$
3	4.6	13.8	1	7
4	6.5	26	0	
5	6.9	34.5	1	
6	7.8	46.8	4	
7	9	63	9	
<mark>28</mark>	<mark>42.1</mark>	<mark>195.2</mark>	<mark>28</mark>	المجموع:

(0.5)......
$$G\left(4;6.014
ight)$$
 -(2

$$b = \overline{y} - a\overline{x} = 2.182$$
 $a = 0.958$ $V(x) = 4$ $cov(x, y) = 3.830$ -(3

(02).....
$$y = 0.958x + 2.182$$
 : هي الانحدار بالمربعات الدنيا هي الدنيا على الدنيا على

$$y=12.72$$
: هي : 11 و منه : $y=12.72$

