الجمهورية الجزائرية الديمقراطية الشعبية

مديرية التربية لولاية عين تموشنت ثانوية داودي محمد ـ المالح ـ دورة ماي: 2018

وزارة التربية الوطنية امتحان بكالوريا تجريبي

الشعبة: علوم تجريبية

المدة: 3 سا و نصف

اختبار في مادة:الرياضيات

على المترشح أن يختار موضوعا وإحدا من الموضوعين:

الموضوع الأول

التمرين الأول: (4 نقاط)

$$u_{n+2}=u_{n+1}-rac{1}{4}u_n$$
 : \square منتالية معرفة على \square ب \square ب \square ب \square \square \square منتالية معرفة على \square ب \square ب \square ب \square \square \square ب \square المعرفة على \square ب \square ب \square ب \square ب \square المعرفة على \square ب \square

أ ـ اثبت أن (v_n) هندسية يطلب تحديد أساسها و حدها الأول.

. v_n بدلالة n عبارة الحد العام

 $\lim_{n} s_n = v_0 + v_1 + \cdots v_n$ ثم حدد n ثم حدد ج

$$w_n = \frac{u_n}{v_n}$$
: من اجل کل n من أجل كل (2

أ ـ اثبت أن $\left(w_{n} \right)$ حسابية يطلب تحديد أساسها و حدها الأول.

 $e^{w_n} > 2018$: الذي يحقق n الذي يحقق w_n ثم عين أصغر عدد طبيعي الذي يحقق

التمرين الثاني: (4 نقاط)

يضم كيس خمس كرات بيضاء مرقمة من 1 إلى 5 وثلاث كرات حمراء مرقمة من 6 إلى 8 وكرتين خضراوين تحملان الرقمين 9 و 10(الكرات لا نفرق بينها عند اللمس). نسحب عشوائيا كرتين من الكيس في آن واحد.

- A " الكرتان المسحوبتان تحملان رقمين فرديين A " الكرتان المسحوبتان تحملان رقمين فرديين A
- " الكرتان المسحوبتان من نفس اللون " و C " الكرتان المسحوبتان من لونين مختلفين " B
 - eta الحادثتان A و B مستقلتان
 - 2) ما احتمال سحب رقم زوجي على الأقل ؟
 - 3) ما احتمال سحب كرتين تحملان رقمين فرديين علما أنهما من لونين مختلفين ؟
- 4) ما هو عدد الكرات البيضاء الممكن إضافتها إلى الكيس حتى يكون عدد الحالات الممكنة يساوي 120 ؟

التمرين الثالث: (5 نقاط)

$$z_3 = z_1 \times z_2$$
 و $z_2 = -1 - i$ ، $z_1 = \frac{-\sqrt{6}}{2} + \frac{\sqrt{2}}{2}i$: نعتبر الأعداد المركبة (I

. z_3 على الشكل الأسى ثم استنتج الشكل الأسى لاعدد (1

$$\sin\frac{\pi}{12}$$
 و $\cos\frac{\pi}{12}$ على الشكل الجبري ثم استنتج القيم المضبوطة لـ: z_3 على الشكل الجبري ثم استنتج القيم المضبوطة لـ: (2

. و
$$z = x + iy$$
 و $z = x + iy$ و عددان حقیقیان $p(z) = |z|^2 - 3(z - \overline{z}) - 13 + 12i$ و عددان حقیقیان (II

اكتب p(z) على الشكل الجبري. (1

عين
$$p(z)$$
 مجموعة النقط $M(x;y)$ حتى يكون و 2

: النقط B، A النقط $(O;\vec{i}\;;\vec{j}\;)$ النقط $(O;\vec{i}\;;\vec{j}\;)$ النقط $(O;\vec{i}\;;\vec{j}\;)$

.
$$B$$
 و $Z_B = Z_2$ و تحويل نقطي مركزه المبدأ و يحول النقطة $Z_B = Z_1$

- . بين أن التحويل f دوران (1
- . f عدد صورة (E) بالتحويل (2

التمرين الرابع: (7 نقاط)

$$g(x) = x - 1 + \ln x$$
 با $g(x) = x - 1 + \ln x$ با $g(x) = 0$ دالة معرفة على $g(x) = 0$

.
$$]0;+\infty[$$
 بين أن الدالة g متزايدة تماما على المجال $[0;+\infty]$

$$g(x)$$
 احسب $g(1)$ ثم حدد حسب قیم $g(1)$ احسب (2

$$f(x) = \ln x - \frac{\ln x}{x}$$
 بنكن الدالة f المعرفة على $f(x) = 0$; +∞ المعرفة على (II

$$0;+\infty$$
 اً ـ بين أن الدالة f قابلة للإشتقاق على المجال $0;+\infty$ ا $\lim_{x\to +\infty}f(x)$ ب ين أن: $f(x)=+\infty$ ثم احسب $\lim_{x\to +\infty}f(x)=+\infty$

$$f'(x) = \frac{g(x)}{x^2} :]0; +\infty[$$
 من أجل كل x من أوب من أجل كل أبيرات أنه من أجل كل أبيرات أبيرات

2) ليكن (Γ) المنحنى الممثل للدالة \ln في مستوي منسوب إلى معلم متعامد و متجانس .

. $+\infty$ بجوار (C_f) مقارب للمنحني ((Γ) بجوار

. (C_f) و (Γ) بين المنحيين الوضعية النسبية بين

. حسب $f\left(rac{1}{2}
ight)$ ج - احسب $f\left(rac{1}{2}
ight)$ ثم ارسم المنحيين

- عين قيم العدد الحقيقي m حتى تقبل المعادلة f(x)=f(m) عين متمايزين.
 - ا التكامل التكامل $I = \int_{1}^{e} \left[\ln x f(x) \right] dx$ احسب التكامل (4

الموضوع الثاني

التمرين الأول: (4 نقاط)

الفضاء منسوب الى معلم متعامد ومتجانس $(O; \vec{i}, \vec{j}, \vec{k})$. و لكن المستويين (P) و (Q) الذين معادلتيهما

.
$$A(0;1;1)$$
 و $A(0;1;1)$ على الترتيب و $A(0;1;1)$ على $x+2y-z+1=0$

. اثبت أن المستويين (P) و (Q) متعامدان (1

$$\left(t\in\square\right)$$
: $\begin{cases} x=-rac{1}{3}+t \\ y=-rac{1}{3} \end{cases}$ برهن أن المستويين (P) و (Q) متقاطعان وفق المستقيم (Δ) ذو تمثيل وسيطي $z=t$

- (Q) و (P) احسب المسافة بين A و كل من المستويين
 - استنتج المسافة بين النقطة A و المستقيم (Δ).

التمرين الثاني: (4 نقاط)

$$p(z) = z^3 - 3z^2 + 3z - 9$$
 ليكن كثير الحدود: (1

.
$$p(z)$$
 الحدود عنو المحدود أ - تحقق أن

$$p(z) = 0$$
 المعادلة $p(z) = 0$

D، C، B، A النقط $O; \vec{i}; \vec{j}$ النقط متعامد و متجانس ($O; \vec{i}; \vec{j}$) النقط (2

$$z_F=1-i\sqrt{3}$$
 و $z_D=2e^{i\frac{5\pi}{6}}$ و $z_C=-i\sqrt{3}$ و $z_B=i\sqrt{3}$ و $z_A=3$: و $z_A=3$ المثلث $z_B=1-i\sqrt{3}$ و $z_B=1-i\sqrt{3}$ و $z_A=3$ المثلث $z_B=1-i\sqrt{3}$ و $z_B=1-i\sqrt{3}$ و $z_A=3$

. $\frac{\pi}{3}$ صورة D بالدوران الذي مركزه D و زاويته و بالدوران الذي مركزه Z_E بالدوران الذي مركزه Z_E

. جـ احسب
$$\frac{Z_F}{Z_E}$$
 و استنتج أن المستقيمين OE) و OF متعامدان

د ـ عين Z_G لاحقة النقطة G حتى يكون الرباعي Z_G مربعا.

التمرين الثالث: (4 نقاط)

$$(m{u_{n+1}})^2=2m{u_n}$$
 , $n\in\mathbb{N}^*$ و $U_1=1:$ فتكن $U_1=1:$ متتالية حدودها موجبة حيث $U_1=1:$ و $U_1=1:$ متتالية حدودها موجبة حيث $U_1=1:$ $U_2=1:$ متتالية حدودها موجبة حيث $U_1=1:$ $U_2=1:$ $U_1=1:$ $U_2=1:$ $U_1=1:$ $U_2=1:$ $U_1=1:$ $U_2=1:$ $U_1=1:$ $U_2=1:$ $U_1=1:$ $U_1=1:$ $U_1=1:$ $U_2=1:$ $U_1=1:$ $U_$

(يرمز
$$\ln$$
 الى دالة اللوغاريتم النيبيري) نضع من أجل كل n من $\nu_{\rm n}=\ln u_{\rm n}-\ln 2$: \mathbb{N}^* نضع من أجل كل

. أ- بين أن
$$(\mathcal{V}_n)$$
 متتالية هندسية يطلب أساسها و حدها الأول

$$u_n$$
 و v_n بدلالة n عبارة الحد العام لكل من v_n

$$\lim \mathcal{U}_{\mathrm{n}}$$
 ثم $\lim \mathcal{V}_{\mathrm{n}}$ ج- أحسب

$$e^{v_n} = \frac{u_n}{2}$$
: من أجل كل n من أجل أرع أنه من أجل (3

$$p = \frac{u_1 \times u_2 \times \dots \times u_n}{2^n} : \text{leads} \cdot \text{leads}$$

التمرين الرابع: (8 نقاط)

$$g(x)=e^{-x}+x$$
: الدالة العددية للمتغير الحقيقي x و المعرفة على الدالة العددية للمتغير الحقيقي الحقيقي المعرفة على g

1) أدرس تغيرات الدالة g.

$$1+xe^x>0$$
 : $\mathbb R$ استنتج أنه من أجل كل x من (2

$$f(x) = \ln(e^{-x} + x)$$
: التكن f دالة عددية لمتغير حقيقي x معرفة على العبارة $\mathbb R$ بالعبارة عددية لمتغير عقيقي

 $(\mathcal{O}; \vec{\imath}, \vec{\jmath})$ منحناها البياني في المستوي المنسوب الى معلم متعامد و متجانس منحناها البياني في المستوي المنسوب الى معلم متعامد و متجانس

$$f(x) = \ln(1 + xe^x) - x$$
 : تحقق من اجل کل x حقیقی فان -1

2− أدرس تغيرات الدالة ﴿

$$(C_g)$$
 بجوار ∞ ، ثم أدرس وضعيته بالنسبة لـ (Δ) : $y=-x$ بين أن المستقيم (Δ) : ب

$$h(x)=f(x)-\ln x:$$
 اب $x:=0,+\infty$ المجال عددية لمتغير حقيقي x معرفة على المجال -4

$$\lim_{x\to+\infty} h(x) \quad \text{i.e.} \quad -1$$

$$h(x)$$
ب- أدرس اشارة العبارة

$$(C_{\#})$$
 و منحنى دالة اللوغاريتم النيبيري $-$

$$(C_{\#})$$
 أرسم بعناية المنحنى أ -5