

الجُمْهُورِيَةُ الجَزَائِرَيَةُ الدِّيمُقْرَاطِيَّةُ الشَّعْبِيَةُ وَزَارَةُ التَّرْبِيَةِ الوَطَنِيَةِ

مُدِيَرِيَة التَّوْبِيَة لِوِلَايَةِ الأَعْوَاطِ ، ثَانَوِيَةُ الشَّيخ أحمد قصيبة الاختبار الأوَّل في مسادَّة الرياضيات السنوات الثَّالثة علوم تجريبية

۱۳۳۳ ۱۳۳۳ <u>2018</u> الاثنین 03 دسمبر <u>2018</u>

ملاحظة ملاحظة منح نُقْطَةٌ وَاحِدَةٌ عَلَى تَنْظِيمٍ وَرَقَةِ الإِجَابَةِ

السُّؤالُ النَّظَري: (مُنقَطَّةٌ وَاحِدَةٌ)

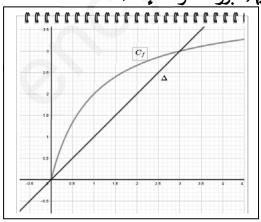
.] θ ; + ∞ [علما أنّ الدالة n'' مستمرة و قابلة للإشتقاق على

.
$$\ln'(x) = \frac{1}{x}$$
,] θ ; + ∞ [من عدد حقیقی x من أجل كل عدد حقیقی

التمرين الأوّل: (03نِقَاطٍ): أجب بـ :صحيح أو خطأ مع التبرير.

$$.ln\left(ln\left((x)^{^{(2)^{(-n)}}}\right)\right) = -n \ln 2 + ln\left(ln(x)\right)$$
 , Q نه أجل كل n من أجل كل x من أجل كل أدار كل

$$e^{|ln(|x|)|} = \frac{1}{x}$$
 , $[-1; \theta[$ من أجل كل x من أجل كل -2


$$0; \frac{\pi}{2}$$
 عدد طبیعی غیر معدوم و x عدد حقیقی من n -3

.
$$n = 12$$
 فإنّ:
$$\begin{cases} log(\sin x) + log(\cos x) = -1 \\ log(\sin x + \cos x) = \frac{1}{2}(-1 + log n) \end{cases}$$
فإنّ:

التمرين الثاني: (08نِقَاطٍ):

$$\Delta: y = x$$
 في الشكل المقابل $f(x) = \frac{4x}{1+x}$ هو التمثيل البياني للدالة $f(x) = 0$ المعرفة على $f(x) = 0$ بالعلاقة C_f هو التمثيل البياني للدالة المعرفة على المعرفة على أورب المعرفة المعرفة على أورب المعرفة المعرفة المعرفة على أورب المعرفة المع

- [0;3] على المجال آ[0;3].
- $u_{n+1} = \frac{4u_n}{1+u_n}$, n ومن أجل كل عدد طبيعي $u_0 = 1$ المتتالية العددية المعرّفة بحدها الأوّل $u_0 = 1$
 - 1) أعد رسم الشكل ثم مثل الحدود u_1, u_1, u_2 وَ u_2 على محور الفواصل دون حسابها, مُبرزا خطوط الإنشاء.
 - 2) ضع تخمينا حول اتجاه تغيّر المتتالية (u_n) و تقاربها.
 - . $\theta < u_n < 3$, n برهن بالتراجع أنَّه من أجل كل عدد طبيعي (3
 - 4) أدرس إتجاه تغير المتتالية (u_n) ثم استنتج أنها متقاربة .

 $v_n = \frac{u_n - 3}{u_n}$ يلي: \mathbb{N} كما يلي: المتتالية العددية المعرّفة على (v_n) -III

1) - أ) بين أنَّ المتتالية (v_n) هندسية يُطلب تعيين أساسها و حدّها الأوّل.

 $u_n = \frac{3}{1+2\left(\frac{1}{4}\right)^n}$, n بدلالة n ثم استنتج أنَّه من أجل كل عدد طبيعي v_n بدلالة n ثم استنتج أنَّه من أجل كل عدد طبيعي $v_n = \frac{3}{1+2\left(\frac{1}{4}\right)^n}$. $v_0 + v_1 + v_2 + ... + v_n = -\frac{341}{128}$ بين قيمة العدد الطبيعي $v_0 + v_1 + v_2 + ... + v_n = -\frac{341}{128}$

 $S_n = \frac{3}{u_0} + \frac{3}{u_1} + \frac{3}{u_2} + \dots + \frac{3}{u_n}$: n in idea with n in idea (3).

 $S_n = \frac{8}{3} \left(1 - \left(\frac{1}{4} \right)^{n+1} \right) + n + 1$, $n = \frac{8}{3} \left(1 - \left(\frac{1}{4} \right)^{n+1} \right) + n + 1$

 $\lim_{n\to+\infty} \left(\frac{S_n}{n}\right) - (3)$

 (S_{n}) أدرس إتجاه تغير المتتالية ((S_{n})

التمرين الثالث (07نِقَاطٍ):

الجزء الأول:

. الدالة العددية المعرفة على $\mathbb R$ كما يلي: 2-x-2 الدالة العددية المعرفة على $\mathbb R$ كما يلي: g

. $\lim_{x \to -\infty} g(x)$ و $\lim_{x \to +\infty} g(x)$ أحسب: (1

2) أدرس إتجاه تغير الدالة g ثم شكل جدول تغيراتها.

a بين أنّ المعادلة $g\left(x\right)=0$ تقبل حلا وحيدا a حيث: 3.1.5

 \mathbb{R} على g أحسب $g\left(0
ight)$ ثم استنتج إشارة الدالة g على g

 $y = \frac{2(1-\alpha)}{(2-\alpha)}(x-\alpha)$: بين أن معادلة الماس لمنحنى الدالة g في النقطة ذات الفاصلة α ثكتب على الشكل g

. h(x) = |g(x)|: لتكن الدالة العددية h المعرفة على $[0,+\infty[$ كما يلي (6

 $x_0=lpha$ بين أنّ الدالة h غير قابلة للاشتقاق عند -

الجزء الثاني:

.
$$\begin{cases} f(x) = \frac{x^2}{e^x - 1}; x \neq 0 \\ f(x) = 0 \end{cases}$$
 الدالة العددية المعرفة على $\mathbb R$ كما يلي: $f(x) = 0$

 \mathbb{R} . بين أن الدالة f قابلة للاشتقاق على \mathbb{R} . ثم بـرّر أنها مستمرة على \mathbb{R} .

. $\lim_{x \to +\infty} f(x) = 0$ أحسب $\lim_{x \to +\infty} f(x)$ أحسب (2

. $f'(x) = \frac{xg(x)}{(e^x - 1)^2}, \mathbb{R}^*$ من أجل كل عدد حقيقي x من أجل كل عدد حقيقي (3

4) أدرس إتجاه تغير الدالة ٢ ثم شكل جدول تغيراتها.

 $f(\alpha)$ بين أنّ: $f(\alpha) = \alpha(2-\alpha)$ ثم استنتج حصراً للعدد (5

6) أنشئ C_f منحنى الدالة f في معلم متعامد و متجانس.

 $f(x) = e^{-m}$ ناقش بيانيا وَ حسب قيم الوسيط الحقيقي m عدد و إشارة حلول المعادلة (7

اللهُستانو : زيرة يتمنى النَّجاح للجميع.

3as.ency-education.com