المدة :03/12/2018 المدة :03/12/2018

الشعبة: ع تجريبية

المستوى : الثالثة

اختبار الغصل الأول فيي مادة الرياضيات

التمرين الأول: (04ن)

لكل سؤال من بين الأسئلة التالية إجابة واحدة صحيحة يطلب تعيينها معللا اختيارك.

الحلول على $y' = (\ln 1962)y + 3\ln(654\sqrt[7]{2187})$ الحلول على $q' = (\ln 1962)y + 3\ln(654\sqrt[7]{2187})$

$$f(x) = c1962^{x} - \ln 3$$
 (τ $f(x) = c1962^{x} - 3$ (φ

$$f(x) = c1962^x - 3$$
 (ب

$$f(x) = c1962^x + 3$$
 (1)

$$\frac{1}{1080}$$
 (ج $\frac{1}{12}$ (ب

$$\frac{1}{1080}$$
 (ε . $\frac{1}{12}$ (φ . $\frac{1}{36}$ (أ ε) $\frac{1}{36} = \frac{\sqrt{x + 2019} - 45}{x^2 - 36}$ (2)

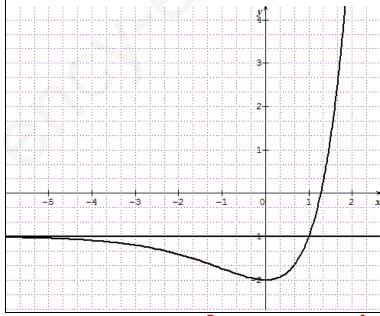
: هي R في $e^{2x} - 1955e^x + 1954 = 0$ في R في R في R

.
$$3\ln 1439$$
 (ج $\cdot \frac{3^{1440}-1}{2}$ (ب $\cdot \frac{3^{1439}-1}{2}$ (أ : مساويا $\ln \left[e^{3^0}\times e^{3^1}\times e^{3^2}\times\times e^{3^{1439}}\right]$ العدد (4

التمرين **الثاني** (04ن) :

$$\begin{cases} u_0 = 1 \\ u_{n+1} = \frac{1}{3}u_n + \frac{2}{3^{n+1}} \end{cases}$$
: نعتبر المنتالية العددية (u_n) المعرفة كمايلي

- u_{2} و u_{1} (1
- $v_n = 3^n u_n$: نعتبر المنتالية (v_n) المعرفة على المعرفة على (2
 - . بين أن المتتالية (v_n) حسابية
- . ب- أكتب v_n ثم u_n بدلالة u_n وتحقق أن حدود المتتالية v_n موجبة
- $2^n \ge 1 + 2n$ أ بين بالتراجع أن من أجل عدد طبيعي $n \ge 3$ حيث $n \ge 3$


$$0 < u_n \le \left(\frac{2}{3}\right)^n$$
 : $n \ge 3$ کل کے اُن من أجل من أجل عل

 $\lim_{n\to+\infty}u_n$ = = =

التمرين الثالث (06ن)

- لدالة (C) الشكل المقابل (C) هو التمثيل البياني للدالة
- $g(x) = (ax+b)e^x + c$ بامعرفة على g
 - 1 بقراءة بيانية:
 - c غين $\lim_{x\to\infty}g(x)$ ثم استنتج قيمة
 - $\lim_{x\to 1} g(x)$ عين (ب
- ج) عين كلا من g(0) و g(0) ثم استنتج قيمة كل من

b a

$$g(x) = (x-1)e^x - 1$$
: نفرض في ما يلي - 2

$$g$$
 أ- شكل جدول تغيرات الدالة

$$\Box$$
 على على حلا وحيدا α على على $g(x) = 0$

$$\cdot 1,2 < \alpha < 1,3$$
: ثم تحقق أن

$$g(x)$$
 - استنتج إشارة

و
$$f(x) = \frac{x}{e^x + 1}$$
 الدالة المعرفة على $f(x) = \frac{x}{e^x + 1}$ و $f(x) = \frac{x}{e^x + 1}$ المعلم المتعامد المتجانس $f(z) = \frac{x}{e^x + 1}$

- . + ∞ المقارب بجوار بحوار معادلة للمستقيم المقارب بجوار f(x) أحسب أحسب أf(x)
- . (Δ) النسبة لـ (C_f) بجوار $-\infty$ ، ثم أدرس وضعية y=x مقارب لـ y=x مقارب لـ (Δ) بجوار -2
 - -3 أدرس اتجاه تغير الدالة f وشكل جدول تغيراتها.

.
$$f(\alpha)$$
 ہے مستنتج حصرا لے $f(\alpha) = \alpha - 1$

- $\cdot(C_{_f})$ أرسم المنحنى-5
- . f(x) = f(m): x المجهول x المعادلة ذات المجهول m وجود و عدد حلول المعادلة ذات المجهول -6

التمرين الرابع (06ن)

الدالة المعرفة على :
$$-\infty; -2[\cup] -1; +\infty[$$
 الدالة المعرفة على : $-\infty; -2[\cup] -1; +\infty[$ الدالة المعرفة على : $-\infty; -2[\cup] -1; +\infty[$ المنسوب إلى المعلم المتعامد المتجانس (o,\vec{i},\vec{j}) .

- . احسب نهایات الدالة f عند حدود مجموعة تعریفها ثم فسر النتائج هندسیا f
- بين أن المستقيم (Δ) ذو المعادلة: y=x+1 مقارب لـ C_f) بجوار ∞ ، ثم أدرس وضعية y=x+1 بالنسبة لـ Δ).

f(-3-x)+f(x)=-1 : نه النتيجة وهندسيا لهذه النتيجة. $x \in (c_f)$ عن الدالم و f(-3-x)+f(x)=-1 : نه المدالم الدالم الم الدالم الدالم

. $\frac{2}{3}$ برهن على وجود مماسين لـــ $\left(C_{f}\right)$ معامل توجيه كل منهما مساويا \int

 $\cdot(C_f)$ و المنحنى (Δ) المستقيم

ناقش بيانيا وحسب قيم الوسيط الحقيقي m حيث m>0 وجود وعدد حلول المعادلة ذات المجهول x:

$$2\ln\left(\frac{mx+m}{x+2}\right) = x+1$$

بالتوفيق فيي بكالوريا 2019/2018

3as.ency-education.com