المحنبار الأول في مادة الرباضبات

المستوى: الثالثة علوم تجريبية.

النمرين الأول: 2ن

في كل حالة من الحالات التالية عين الإجابة الصحيحة من بين A و B و C ،مع التعليل:

С	В	A	السؤال
$e^{3\ln(2-\frac{1}{4})}$	32	$\frac{2\ln 2}{-\ln 4}$	العدد $e^{3\ln 2 - \ln \frac{1}{4}}$ يساوي
			الحل الخاص للمعادلة التفاضلية
$f(x) = e^{-2x+2}$	$f(x) = e^{-2x+2} + 2$	$f(x) = e^{2x} + 2$: هو $f(1) = 3$ و $2y' + 4y = 8$
-∞	+∞	0	$\lim_{x \to +\infty} \frac{1}{x} \left(x^2 + 1 - lnx \right)$

ن 7 <u>: كانانا:</u> 7 ن

 $f(x)=-rac{1}{2}x+\ln(1+e^{2x})$ نعتبر الدالة f المعرّفة على \Re كما يلي:

 $(O; \vec{\imath}, \vec{\jmath})$ تثيلها البياني في المستوي المنسوب إلى معلم متعامد ومتجانس (C_f)

 $\lim_{x \to -\infty} f(x) - 1$

ب - استنتج أنّ للمنحنى (C_f) مستقيم (Δ) مقارب مائل عند ∞ يطلب تعيين معادلة له.

 (Δ) بالنسبة إلى (C_f) بالنسبة إلى

 $f(x) = \frac{3}{2}x + \ln(1 + e^{-2x})$: ادینا: x عدد حقیقی x، لدینا: x عدد حقیقی x

 $\lim_{x\to+\infty}f(x) - - -$

. استنتج أنّ للمنحنى (C_f) مستقيم (Δ') مقارب مائل عند $\infty+$ يطلب تعيين معادلة له.

د - ادرس وضعية (C_f) بالنسبة إلى (Δ') .

3- ادرس اتجاه تغیر الدالهٔ f، ثم شکل جدول تغیراتها.

4- أ - بيّن أنّ للمنحنى $\binom{C_f}{r}$ مستقيما مماسا $\binom{T}{r}$ معامل توجيهه $\frac{1}{2}$ ، يطلب تعيين معادلة له.

f(x) - f(-x) = x بيّن أنّه من أجل كل عدد حقيقي x، لدينا:

(-x) و (-x) و المنتخى و المنتخى المنتخى و المنتخى المنتض المنتخى المنتخى المنتخى المنتخى المنتخى المنتخى المنتخى المنتخى

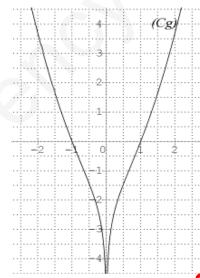
- بيّن أنّ المستقيمين (MN) و (T) متوازيان.

 (C_f) والمنحنى (Δ')، (Δ')، (Δ')، (Δ') والمنحنى (5-

 $g(x)=x^2+ln|x|-1$ نعتبر الدالة g المعرفة على \Re^* كما يلى: I

مثيلها البياني كما هو مبيّن في الشكل المقابل. (C_g)

g(x) بيانية حدد جدول إشارة لـ



. $f(x) = \frac{\ln |x|}{x} - x + 2$ يلي: f الدالة f الدالة المعرّفة كما يلي: -II

 $(O; ec{t}, ec{f})$ تثيلها البياني في المستوي المنسوب إلى معلم متعامد ومتجانس (C_f)

1- احسب نهایات الدالهٔ f عند أطراف مجالات مجموعهٔ تعریفها.

. $f'(x) = \frac{-g(x)}{x^2}$: Legil : $\frac{-g(x)}{x^2}$: $\frac{-g(x)}{x^2}$. Legil : $\frac{-g(x)}{x^2}$. Legil : $\frac{-g(x)}{x^2}$

ب - استنتج اتجاه تغير الدالة f ثم شكل جدول تغيراتها.

A(0;2) مركز تناظر للمنحنى A(0;2).

eta و lpha بيّن أنّ المنحنى (C_f) يقطع المستقيم حامل محور الفواصل في نقطتين فاصلتاهما lpha و lpha حيث: lpha < 0.5 و lpha < 2.4 و lpha < 0.5

ررم) مقارب مائل للمنحنى (C_f) مقارب مائل للمنحنى (C_f) مقارب مائل للمنحنى (C_f) بالنسبة إلى (C_f) بالنسبة (C_f) بالنسب

6- بيّن أنّ للمنحنى $\binom{C_f}{r}$ مستقيمين مماسين $\binom{T'}{r}$ و $\binom{T'}{r}$ معامل توجيهها $\binom{T}{r}$ ، جد معادلة لكل منها.

 (C_f) أنشئ المستقيمات (d)، (T') والمنحنى (T').

f(x) = -x + m عدد حقیقی، ناقش بیانیا وحسب قیم الوسیط m عدد حلول المعادلة m

h(x) = |f(x)| يلي: h(x) = |f(x)| يعتبر الدالة h(x) = |f(x)| على h(x) = |f(x)| . أنشئ h(x) = |f(x)| بالاعتباد على h(x) = |f(x)| في نفس المعلم السابق وبلون مختلف.

النمرين الرابع: 4ن

 $u_{n+1}=rac{2}{3}u_n+rac{4}{3}$: n عدد طبیعي $u_0=1$. n عال عدد علی المعرفة علی $u_0=1$. $u_0=1$

-1 أنشئ في المستوي المنسوب إلى المعلم المتعامد والمتجانس $\left(C_{f},\vec{j},\vec{j}\right)$ المنثل للدالة f المعرفة على v=x المعادلة $f(x)=\frac{2}{3}x+\frac{4}{3}$

2- مثّل على حامل محور الفواصل الحدود u_1 ; u_0 و u_1 باستعمال الرسم السابق ودون حساب الحدود. أ- ضع تخمينا حول اتجاه تغير المتتالية (u_n) .

ومعدوم عدد مقیقی غیر معدوم $u_n=u_n+\alpha$ بالعلاقة: $u_n=u_n+\alpha$ عدد حقیقی غیر معدوم $u_n=u_n+\alpha$ معدوم عین قیمة $u_n=u_n+\alpha$ متتالیة هندسیة یطلب تعیین أساسها $u_n=u_n+\alpha$ وحدها الأول $u_n=u_n+\alpha$

 $\alpha = -4$ بنضع

n بدلالة n بدلالة n بدلالة v_n بدلالة -

 $v_n = u_n$. $v_n = -$

. $S_n = u_0 + u_1 + u_2 + \dots + u_n$ المجموع: n المجموع: - احسب بدلالة

 $P_n=e^{-3} imes e^{\left(rac{-6}{3}
ight)} imes \dots imes e^{\left(-3 imes rac{2^n}{3^n}
ight)}$.:احسب بدلالة n الجداء:

🕻 بالنوفيق والنجاح للجميع 🖠

إنتجج

$$f'(x) = \frac{-1}{2} + \frac{2e^{2x}}{1 + e^{2x}} = \frac{3e^{2x} - 1}{2(e^{2x} + 1)} : \text{-3}$$

لدينا $0 > (e^{2x} + 1)$ ومنه الإشار من إشارة $e^{2x} - 1$ جدول الإشارة:

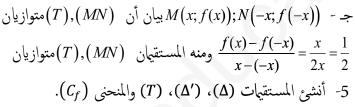
х	$-\infty$	$-\ln(3$	3)/2	+∞	$x = -\frac{\ln x}{2}$.3
f'(x)		_	+		2	<u>'</u>

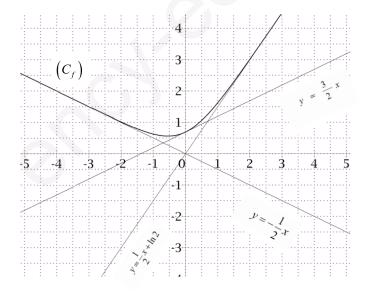
 $[-\infty; -\ln(3)/2]$ على $[-\ln(3)/2; +\infty]$ ومتناقصة تماما على الدالة f

جدول التغيرات

x	$-\infty$	$-\frac{\ln 3}{2}$	$+\infty$
f'(x)	_	0	+
f(x)	$+\infty$	$\Rightarrow \frac{\ln 3}{4} + \ln \left(\frac{4}{3} \right)$	$+\infty$

$$f'(x) = \frac{1}{2} \quad | 1$$
 المعادلة $\frac{1}{2} \cdot \frac{1}{2} \cdot$





ثانوية عمي شعينه - غرواية الكل النموظِجِي للإعتبار الأول

المستوي: الثالثة علوم تجريبية السنة الدراسية: 2018-2019 النصرية: 1318-2019 النصرية: 1318-2019

$$e^{3\ln 2 - \ln \frac{1}{4}} = e^{\ln 2^3 + \ln 4} = e^{\ln 2^3} \times e^{\ln 4} = 8 \times 4 = 32$$
 'B' (1)

$$2y' + 4y = 8$$
 'B' (2
 $y' = -2y + 4$

$$v' = -2v + 4$$

$$f(1) = 3$$
; $f(x) = Ce^{-2x} + 2$ Which is a substitution of the state of the stat

$$f(x) = e^{-2x+2} + 2$$
 ومنه $f(x) = e^2 \times e^{-2x} + 2$ $C = e^2$

$$\lim_{x \to +\infty} \frac{1}{x} \left(x^2 + 1 - \ln x \right) = \lim_{x \to +\infty} \left(\frac{x^2}{x} + \frac{1}{x} - \frac{\ln x}{x} \right) = +\infty \ 'B'(3)$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$
 $\forall x$

<u>النمرين الثاني:</u>

$$f(x) = -\frac{1}{2}x + \ln(1+e^{2x})$$
 : الدالة f المعرّفة على \Re كما يلي \Re

$$\lim_{x \to -\infty} \ln(1 + e^{2x}) = 0$$
 يُّل
$$\lim_{x \to -\infty} f(x) = +\infty$$
 -1

$$(\Delta)$$
 مستقیم $y = -\frac{1}{2}x$ فإن $\lim_{x \to -\infty} \ln(1 + e^{2x}) = 0$ فبر بأن

$$-\infty$$
 مقارب مائل للمنحن $\left(C_f
ight)$ بجوار

$$(\Delta)$$
 و (C_f) للمنحنى النسبي للمنحنى (C_f)

$$f(x) - \left(-\frac{1}{2}x\right) = \ln(1 + e^{2x})$$
 $1 + e^{2x} > 1$

$$.(\Delta)$$
 ومنه (C_f) فوق $e^{2x}\succ 0$ ومنه

$$f(x) = \frac{3}{2}x + \ln(1 + e^{-2x})x$$
 عدد حقیقی عدد اجل کل عدد -2

$$\frac{3}{2}x + \ln\left(1 + e^{-2x}\right) = \frac{3}{2}x + \ln\left(1 + \frac{1}{e^{2x}}\right) = \frac{3}{2}x + \ln\left(\frac{e^{2x} + 1}{e^{2x}}\right)$$

$$= \frac{3}{2}x + \ln(e^{2x} + 1) - \ln(e^{2x}) = \frac{3}{2}x - 2x + \ln(e^{2x} + 1)$$

$$= -\frac{1}{2}x + \ln(e^{2x} + 1) = f(x)$$

$$\lim_{x \to +\infty} \ln\left(1 + e^{-2x}\right) = 0$$
 نب
$$\lim_{x \to +\infty} f(x) = +\infty$$

جہ - بمأن
$$(\Delta')$$
 مقارب $y=rac{3}{2}x$ فإن $\lim_{x o +\infty} \ln\left(1+e^{-2x}\right)=0$ مقارب

$$+\infty$$
 مائل للمنحنى $\left(C_{f}
ight)$ بجوار

$$\left(\Delta'
ight)$$
و $\left(C_{f}
ight)$ د- دراسة الوضع النسبي للمنحنى

$$f(x) - \left(\frac{3}{2}x\right) = \ln(1 + e^{-2x})$$
 $1 + e^{-2x} > 1$

$$.\left(\Delta'
ight)$$
 ومنه $\left(C_f
ight)$ فوق $e^{-2x}\succ 0$ ومنه

3as.ency-education.com

$$f(0,4) = -0.6$$
 $f(0,5) = 0.1$
 $f(0,4) \times f(0,5) < 0$

f(x) = 0 ومنه حسب مبرهنة القيم المتوسطة فإن المعادلة

$$\alpha \in \left]0,4;0,5\right[$$
 تقبل حلا وحيدا α حيث

$$[2,3;2,4]$$
 الدالة f مستمر ورتيبة تماما على المجال

$$f(2,3) = 0.06$$
 $f(2,4) = -0.6$ ولدينا: $f(2,4) \times f(2,3) \prec 0$

f(x) = 0 منه حسب مبرهنة القيم المتوسطة فإن المعادلة

$$eta\in\left]2,3;2,4\right[$$
 تقبل حلا وحيدا eta حيث

$$\cdot \left(\mathcal{C}_f \right)$$
 بيان أنّ المستقيم $y = -x + 2$ مقارب مائل للمنحنى -5

$$\lim_{|x| \to +\infty} \left[f(x) - \left(-x + 2 \right) \right] = \lim_{|x| \to +\infty} \frac{\ln|x|}{x} = 0$$

 $-\infty;+\infty$ ومنه المستقيم y=-x+2 (d) ومنه المستقيم

(d) و (C_f) بين النسبي بين دراسة الوضع

$$f(x) - \left(-x + 2\right) = \frac{\ln|x|}{x}$$

جدول الإشارات:

х	$-\infty$ –	1	0 1	+∞
х	_	_	+	+
$\ln x $	+ (_	- () +
$\frac{\ln x }{x}$	_	+	-	+
الوضعية	تخت (C_f)	$\left(C_f ight)$ فوق	تخت (C_f)	فوق $\left(C_f ight)$
السبيه	(d)	(d)	(u)	(d)

(-1) معامل توجیهها (C_f) معامل توجیهها (-1)

$$1 = \ln|x|$$
 $\frac{1 - \ln|x|}{x^2} - 1 = -1$ ومنه $f'(x) = -1$ نحل المعادلة

x = -e ومنه x = e

$$y = -x + 2 + \frac{1}{e}$$
 $y = -x + 2 - \frac{1}{e}$

النمرين النالث

 $g(x) = x^2 + \ln |x| - 1$ الدالة g المعرفة على \Re^* كما يلى: I

. تثيلها البياني (C_g)

$$x \rightarrow \infty -1 \qquad 0 \qquad 1 \rightarrow \infty$$
 $g(x) + 0 - 0 + 0 + 0$
 $g(x) + 0 - 0 + 0$

$$f(x) = \frac{\ln|x|}{x} - x + 2$$
 الدالة f المعرّفة \Re^* كما يلي: II

1- حساب النهايات

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0 \quad \text{if } \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{\ln |x|}{x} - x + 2 = -\infty$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{\ln(-x)}{x} - x + 2 = \lim_{X \to +\infty} \frac{\ln X}{-X} + X + 2 = +\infty$$

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\ln|x|}{x} - x + 2 = +\infty$$

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{\ln|x|}{x} - x + 2 = -\infty$$

2- أ- حساب المشتقة:

$$]-\infty;0[,]0;+\infty[$$
 الدالة f تقبل الاشتقاق على المجالين f

$$f'(x) = \frac{1 - \ln|x|}{x^2} - 1 = \frac{1 - \ln|x| - x^2}{x^2} = \frac{-g(x)}{x^2} \infty$$

ب- استنتاج اتجاه التغير:

: ومنه -g(x) إشارة المشتقة f' عسب إشارة

x	$-\infty$	-1		0		1	$+\infty$
f'(x)	_	Ó	+		+	þ	-

ومنه الدالة f متزايدة تماما على المجالين [-1;0[,]0;1] ومتناقصة تماما على المجالين $]\infty+1],[1;+\infty[$ جدول التغيرات

х	$-\infty$	-1		0	1	$+\infty$
f'(x)	_	þ	+		+	o –
f(x)	+∞	\ 3	+∞	-0	1.	

A(0;2) مركز تناظر للمنحنى A(0;2).

$$f(0\times 2-x)+f(x)=4$$

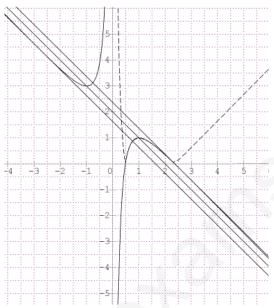
$$f(-x) + f(x) = \frac{\ln|x|}{-x} + x + 2 + \frac{\ln|x|}{x} - x + 2 = 4$$

ومنه النقطة A(0,2) مركز تناظر للمنحنى

eta و lpha ميان أنّ (C_f) يقطع محور الفواصل في نقطتين فاصلتاهما lpha

]0,4;0,5[الدالة f مستمر ورتيبة تماما على المجال

3as.ency-education.com



$$f(x)=-x+m$$
 المناقشة البيانية حلول المعادلة على حلول المعادلة هي فواصل فقط تقاطع المنحنى و المعادلة $y=-x+m$ خو المعادلة $y=-x+m$

المعادلة تقبل حل وحيد.
$$m\in\left]-\infty;2-rac{1}{e}\right[$$

المعادلة تقبل حلين احدهما مضاعف.
$$m=2-rac{1}{e}$$

. المعادلة تقبل ثلث حلول
$$m\in\left]2-rac{1}{e};2
ight[$$

المعادلة تقبل حلين.
$$m=2$$

المعادلة تقبل ثلث حلول
$$m \in \left]2;2+rac{1}{e}\right[$$

المعادلة تقبل حلين احدهما مضاعف.
$$m=2+rac{1}{e}$$

المعادلة تقبل حل وحيد.
$$m \in \left[2 + \frac{1}{e}; +\infty\right]$$

$$h(x) = |f(x)|$$
 الدالة h المعرفة على $+\infty$ الدالة h المعرفة على -8

إنشاء
$$(C_h)$$
 بالاعتاد على (C_f) في نفس المعلم السابق

$$h(x) = -f(x)$$
 $f(x) \le 0$ من أجل

متناظران بالنسبة إلى محور الفواصل.
$$(C_h)$$

$$h(x) = f(x)$$
 من أجل $f(x) > 0$

. و
$$\left(C_{h}
ight)$$
متطابقان $\left(C_{f}
ight)$