المدة:ساعة

المستوى:3ع.ت

الفرض الأول للفصل 01 في مادة الرياضيات

حيث
$$f(x)=(ax+b)e^{x-1}+c$$
 : كما يلي \mathbb{R} كما يلي $f(x)=(ax+b)e^{x-1}+c$: كما يوضحه الشكل $f(x)=(ax+b)e^{x-1}+c$: عداد حقيقية وليكن $f(x)=(ax+b)e^{x-1}+c$: $f(x)=(a$

(
$$\frac{-1}{2}$$
 المنطة فاصلتها $\frac{-1}{2}$) $f'(1)$; $f'(1)$; $f'(1)$; $f(1)$: -1 $f'(1)$. -1 $f'(1)$: -

$$c$$
و b ; a و b ; a عين الأعداد الحقيقية a

$$f(x) = (2x-1)e^{x-1} + 4$$
 : نعتبر فیما یلی

$$\lim_{x \to +\infty} f(x)$$
 -1

التمرين الثاني:

$$f(x) = \frac{2}{e}xe^x - \frac{1}{e}e^x + 4$$
: $\mathbb R$ من x من x ا- تحقق أنه لكل عن -2

$$(\lim_{x \to -\infty} xe^x = 0 : نم فسر النتيجة هندسيا (نقبل أن : $\lim_{x \to -\infty} f(x)$, $\lim_{x \to -\infty} f(x)$$$

3- أدرس إتجاه تغير الدالة
$$f$$
, ثم شكل جدول تغير اتها

$$1 حيث أن المعادلة $f(x)=6$ تقبل حل وحيد $lpha$$$

$$I(0,4)$$
 قط توجد مماسات للمنحنى (C_f) تشمل النقطة -5

$$h(x)=f(x^2)-1$$
 بعتبر الدالة h المعرفة على $\mathbb R$ بـ: h

بإستعمال مشتق دالة مركبة أحسب h'(x) ثم إستنتج إتجاه تغيرها \bullet

X	g(x)
-1.3	0.294
-1.29	0.163
-1.28	0.034
-1.27	-0.093

~(~)

-0.219

$g(x) = -2x^3 - 3x - 8$ بـ: \mathbb{R} بـ: g دالة معرفة على g

0,01موادلة g(x)=0 تقبل حل وحيد lpha على lpha ثم إستنتج حصر المlpha طوله g(x) إستنتج حسب قيم lpha إشارة lpha

نعتبر الدالة
$$f(C_f)$$
 نعتبر الدالة بالمعرفة على \mathbb{R} بـ: \mathbb{R} بـ: \mathbb{R} بنعتبر الدالة بالمعرفة على بالمعرفة ب

$$f(x) = -\frac{1}{2}x + \frac{x+4}{2(2x^2+1)}$$
: \mathbb{R} من x من x -1

ب استنتج أن (C_f) يطلب تعيين معادلته بين معادلته بين معادلته

 (Δ) و المستقيم و النسبي للمنحنى المستقيم ((C_f)

لله إقلب الورقة

-1.26

$$f'(x) = \frac{xg(x)}{(2x^2+1)^2}$$
: $\mathbb R$ من x لكل عن -2

 ϕ أدرس إتجاه تغير الدالة f ثم شكل جدول تغير اتها

ين دون حساب
$$\lim_{h \to 0} \frac{f(\alpha+h)-f(\alpha)}{h}$$
 ثم فسر النتيجة بيانيا -3

 $1.2 < x_0 < 1.3$: حيث x_0 حيث أن المنحنى (C_f) يقطع حامل محور الفواصل في نقطة وحيدة فاصلتها

$$(f(lpha)pprox 0.96$$
 :أرسم (Δ) والمنحنى (C_f)

$$k(x)=f(-|x|)$$
 :ب \mathbb{R} حالة معرفة على k -6

k أدرس شفعية الدالة أ

k إستنتج طريقة لرسم منحنى الدالة

⊙ بالتے فریے

3as.ency-education.com