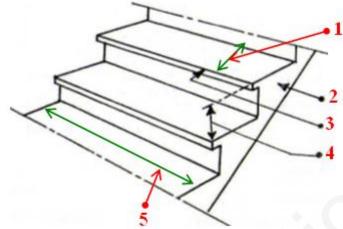
#### وزارة التربية الوطنية

#### مديرية التربية لولاية خنشلة

الفرض الثاني للثلاثي الاول في مادة التكنولوجيا تخصص هندسة مدنية

## الأستاذ. شخاب عبد الكريم


#### البناء

# التمرين الأول :

إليك الشكل التالي :

## *المطلوب:*

- 1. سمي العناصر المرقمة .
- 2. احسب أبعاد الدرجة الملائمة (g وg) لاجتياز علو الطابق (H = 3.06 m) بمدرج مستقيم ذو قلبتين و عدد الدرجات في كل قلبة g درجات .



B

563.65

63.65

A

527.83

317.92

D

71.65

263.65

 $\mathbf{C}$ 

51.47

37.68

# التمرين الثاني :

| أحسب الاسمت الإحداثية للاتجاهات التاليــــة:         |
|------------------------------------------------------|
| إذا علمت أن النقاط $G_SA$ , $G_SB$ , $G_SC$ , $G_SD$ |
| S , A , B , C , D معرفة بإحداثياتها القائمـة         |
| كما هو موضح في الجدول                                |

# ميكانيك مطبقة:

# التمرين الأول :

عند انجاز ورشة صناعية استعملت هياكل معدنية مثلثية شكلها الميكانيكي كالتالي:



S

115.35

95.37

النقاط

X

 $\mathbf{Y}$ 

A : مسند مضاعف

B : مسند بسيط

*المطلوب:* 

<del>3as:ency-education.com</del>

- 1 تحقق من طبيعة النظام المثلثي .
- B. و A حسب ردود الأفعال عند المسندين 2
- 3 أحسب الجهود الداخلية في القضبان باستعمال الطريقة التحليلية.
  - 4 دون النتائج المحصل عليها في جدول.
- .S= $10~{
  m cm}^2$  يذا كانت مساحة مقطعه العرضي DE 4

 $\overline{\sigma} = 400 da N / cm^2$  :ملاحظة: يعطى

#### <u>التصحيح</u>

# التمرين الأول :

- 1. تسمية العناصر المرقمة:
  - 1 النائمة
  - 2 الحصيرة
  - 3 حافة الدرجة
    - 4 القائمة
  - 5 طول الدرجة
- 2. حساب أبعاد الدرجة الملائمة h و g :

لدينا : H=306 cm n=18

$$n = \frac{H}{h} \to h = \frac{H}{n} = \frac{306}{18}$$

$$n = 17 cm$$

$$2h + g = 64$$

$$g = 30 cm$$

### التمرين الثاني :

 $G_{SA}$  حساب

$$\Delta X = 527 - 115.35 = 412.24$$

$$\Delta Y = 317.92 - 95.37 = 222.55$$

$$\Delta X > 0$$

الربع الأول 
$$\Delta Y > 0$$

$$G_{SA} = g$$

$$\operatorname{tg} g = \left| \frac{\Delta X}{\Delta Y} \right| = 1.852$$

$$g = 68.48 \ gr$$

$$G_{SA}=68.48\;gr$$

<u>حساب G<sub>SB</sub> ح</u>

$$\Delta X = 563.65 - 115.35 = 448.3$$

$$\Delta X > 0$$

$$\Delta Y = 63.65 - 95.37 = -31.72$$

$$\Delta Y < 0$$

$$G_{SB} = 200 - g$$

$$\operatorname{tg} g = \left| \frac{\Delta X}{\Delta Y} \right| = 14.13$$

$$g = 95.50 \ gr$$

$$G_{SB}=104.49~gr$$

#### $G_{SC}$ حساب

$$\Delta X = 51.47 - 115.35 = -63.88$$

$$\Delta X < 0$$

$$\Delta Y = 37.68 - 95.37 = -57.69$$

الربع الثالث 
$$\Delta Y < 0$$

$$G_{SC} = g + 200$$

$$\operatorname{tg} g = \left| \frac{\Delta X}{\Delta Y} \right| = 1.10^{\circ}$$

$$g = 53.23 \ gr$$

$$G_{SC} = 253.23 \ gr$$

#### $G_{SD}$ حساب

$$\Delta X = 71.65 - 115.35 = -43.7$$

$$\Delta X < 0$$

$$\Delta Y = 263.65 - 95.37 = 168.28$$

$$\Delta Y > 0$$

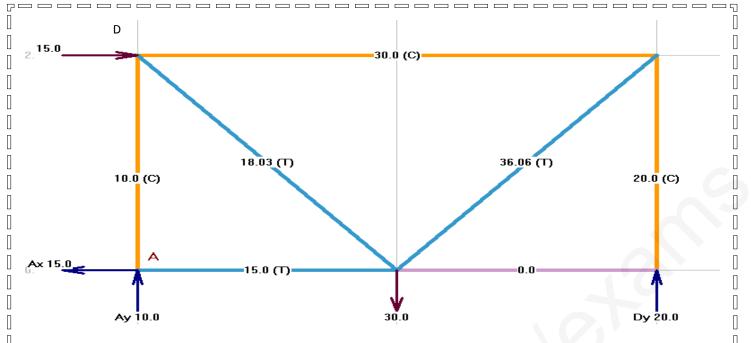
$$G_{SD} = 400 - g$$

$$\operatorname{tg} g = \left| \frac{\Delta X}{\Delta Y} \right| = 0.25$$

$$g = 16.17 \ gr$$

$$G_{SA} = 383.82 \ gr$$

### ميكانيك مطبقة:


# <u>التمرين الأول :</u>

n=5 : عدد العقد - : الدينا

b=7: عدد القضبان

 $2n - 3 = 2 \times 5 - 3 = 7 = b$ 

إذن الهيكل المثلثي محدد سكونيا .



### تدوين النتائج في جدول:

| نوعها (طبيعتها) | القوة (الجهدالداخلي) (KN) | القضيب |
|-----------------|---------------------------|--------|
| شـــد           | 15                        | AE     |
| ضغط             | 10                        | AD     |
| ضغط             | 30                        | CD     |
| ضغط             | 20                        | СВ     |
| تركيبي          | 0                         | BE     |
| شــد            | 18.03                     | DE     |
| شــد            | 36.06                     | CE     |

### التحقق من مقاومة القضيب DE:

$$\sigma = \frac{N_{DE}}{S} = \frac{N_{DE}}{S} = \frac{18.03 \times 10^2}{10} = \frac{daN}{cm^2} < \overline{\sigma} = 1600 daN/cm^2$$

و منه شرط المقاومة محقق .

انتهی

الاستاذ شخاب عبد الكريم

