#### الجمهورية الجزائرية الديمقراطية الشعبية

مديرية التربية لولاية تيبازة

وزارة التربية الوطنية

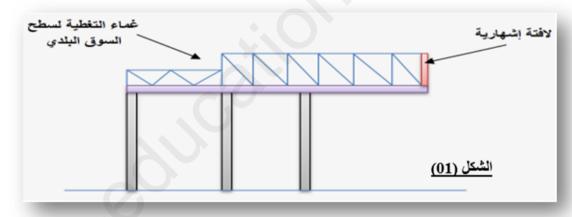
دورة ماي: 2022

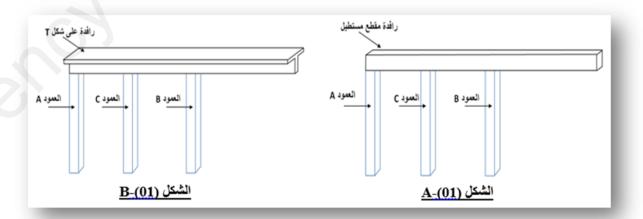
امتحان البكالوريا التجريبي الموحد التعليم الثانوي

كل ثانويات الولاية

الشعبة: تقني رياضي

المدة: 04 ساعات و 30 د

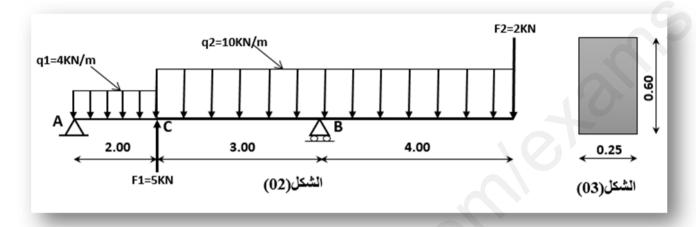

اختبار في مادة: تكنولوجيا (هندسة مدنية)


## على المترشح أن يختار أحد الموضوعين التاليين

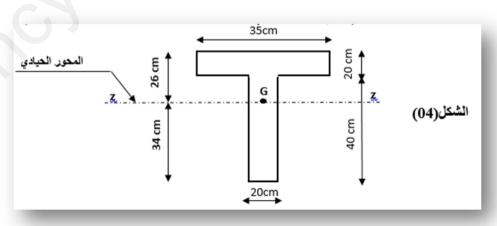
#### الموضوع الأول

يحتوي الموضوع الأول على 5 صفحات (من الصفحة 1من 09 إلى الصفحة 5 من 09)

- \* مقدمة: في إطار التنمية المحلية لإحدى بلديات تيبازة تم إدراج مشروع إنجاز سوق بلدي جواري، يمثل الشكل 1 مظهر جانبي للهيكل الحامل المكون لمحلات السوق البلدي.
  - T الشكل A-01 يمثل اقتراح إنجاز رافدة بمقطع مستطيل الشكل B-01 يمثل اقتراح إنجاز رافدة بمقطع بحرف
    - نقترح عليك عزيزي التلميذ دراسة المشروع المكوّن من أربعة نشاطات مستقلة عن بعضها البعض:
      - \_ دراسة رافدة للسوق البلدى.
      - \_ دراسة شداد من الخرسانة المسلحة.
      - دراسة مساحة القطعة المخصصة لإنجاز السوق البلدي.
        - دراسة جزء من للطريق المؤدي إلى السوق البلدي.







#### الميكانيك التطبيقية: (12 نقطة)

#### • النشاط الأول: دراسة رافدة محددة سكونيا (07 نقاط)

يمثل الشكل (2) شكلا ميكانيكيا لرافدة من هيكل مشروع السوق البلدي و الشكل (3) مقطعها العرضي حيث عوض رد فعل العمود C بقوة عمودية نحو الاعلى F1 ، وثقل اللوحة الإشهارية بقوة عمودية F2 ، و ثقل الغماء بحمولتين (m) موز عتين q2 و q2 ، المسند q (مضاعف) والمسند q (بسيط) (وحدة الطول هي المتر



- <u>العمل المطلوب:</u>
  1) أحسب ردود الأفعال عند المسندين A و B
- (2) أكتب معادلات الجهد القاطع T(x) و عزم الانحناء MF(x) على طول الرافدة.
- $\mathbf{Mf}_{\max}$  و استنتج القيمة العظمى لـ  $\mathbf{T}(\mathbf{X})$  و  $\mathbf{T}(\mathbf{X})$  و استنتج القيمة العظمى لـ  $\mathbf{T}(\mathbf{X})$ 
  - $Mf_{max} = 88 \; \mathrm{KN.m}$  و  $T_{max} = 42 \; \mathrm{KN}$  اتحقق من مقاومة الرافدة إذا علمت ان  $\overline{\tau} = 60 \, daN/cm^2$ ,  $\overline{\sigma} = 200 \, daN/cm^2$
- 5) نريد دراسة الاقتراح الثاني بتغير مقطع الرافدة على شكل حرف T الشكل (04) و بنفس مساحة المقطع المستطيل S=1500 cm<sup>2</sup>
  - أحسب الإجهاد الناظمي الأعظمي للشد و الإجهاد الناظمي الأعظمي للانضغاط. في هذه الحالة. يعطى: Izz=466000 cm<sup>4</sup> (العزم السالب يؤدي لتمدد الألياف العلوية و تقلص الألياف السفلية )



#### النشاط الثاني: دراسة شداد من الخرسانة المسلحة (05) نقاط)

العمود  $\mathbf{A}$  في مشروع السوق البلدي معرض لشد بسيط، نقترح دراسة هذا الشداد المعرض لقوة شد ناظمية مركزية على مقطع العمود. وفق المعطيات التالية:

#### المعطيات:

Nu=0.44MN : الجهد الناظمي في حالة الحد النهائي -

 $Nser = 0.32 \ MN$  : الجهد الناظمي في الحالة الحدية للتشغيل -

 $B=(30 \times 30) \text{ cm}^2$ : المقطع العرضي للعمود

 $fc_{28} = 25MPa$  : مقاومة الخرسانة للانضغاط

fe=400MPa  $\gamma$ s=1.15 : HA التسليح من الفولاذ

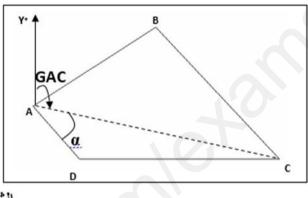
- حالة التشققات ضارة ، التغطية C=3cm -

#### - العمل المطلوب:

1) حساب مقطع التسليح مع إقتراح رسم له.

2) تحقق من شرط عدم الهشاشة.

$$\begin{aligned} f_{t28} &= 0.6 + 0.06 f_{c28} & \overline{\sigma_s} &= \min \left\{ \frac{2}{3} fe; 110 \sqrt{\eta \times f_{t28}} \right\} \\ A_s &\times f_e &\geq B \times f_{t28} & A_{ser} &= \frac{N_{ser}}{\sigma_{st}} & A_u &= \frac{N_u}{f_{su}} \end{aligned}$$


#### اختبار في مادة: تكنولوجيا (هندسة مدنية) / الشعبة: تقنى رياضي / بكالوريا تجريبي 2022 / الموضوع الأول

#### ♦ البناء: (80 نقاط):

#### النشاط الاول: دراسة طبوغرافية (04) نقاط)

لإنجاز المشروع خصصت قطعة ارض على شكل مضلع ABCD كما هو موضح في الشكل 05، بغية تحديد مساحتها، قامت فرقة طبوغرافية بمسح للأرضية فكانت النتائج التالية:





| النقاط | X(m) | Y(m) |
|--------|------|------|
| A      | 50   | 150  |
| В      |      |      |
| С      | 450  | 50   |

125

50

 $\overline{\mathbf{D}}$ 

| الاطوال (m)  | السموت (gr) |  |
|--------------|-------------|--|
| LAB=250      | Gab=59.034  |  |
| LAC=         | GAC=        |  |
| LAD=125      | GAD=        |  |
| .α=43.434 gr |             |  |

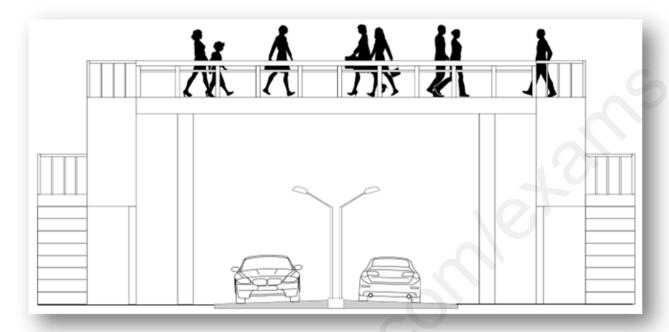
#### العمل المطلوب:

- 1) أحسب السمت الإحداثي GAC و الطول LAC و استنتج السمت (1
  - 2) أحسب إحداثيات النقطة **B**
- 3) أحسب مساحة القطعة الأرضية SABCD باستعمال الإحداثيات القائمة.
- 4) تحقق من مساحة القطعة الأرضية SABCD باستعمال الإحداثيات القطبية

#### النشاط الثانى: دراسة الطريق المؤدي للسوق البلدي (04) نقاط)

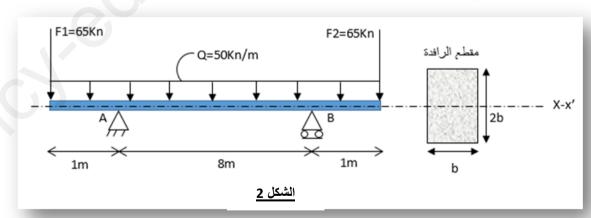
نعتبر مشروع الطريق المؤدي للسوق البلدي، الممتد من P1 إلى P6، الموضح في الصفحة 5.

#### - المطلوب:


1) أتمم رسم المظهر الطولي للطريق و املأ الجدول المرسوم على الصفحة 5 من 9 ، مع حساب المظاهر الوهمية إن وجدت.

#### إنتهى الموضوع الاول




## الموضوع الثاني على 4 صفحات (من الصفحة 4من 9 إلى الصفحة 9 من 9) يحتوي الموضوع الثاني على 4 صفحات

❖ مقدمة: في إطار إنجاز جسر (معبر) لعبور الطريق من الطرف الأول إلى الطرف الثاني نقترح عليك دراسة المشروع المتكون من أربع نشاطات مستقلة عن بعضها البعض.



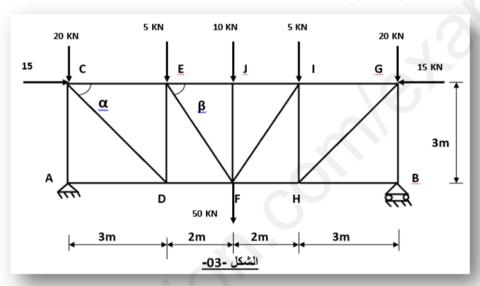
- النشاط الأول: دراسة رافدة (رافدة الجسر)
- النشاط الثاني: در اسة عمود خرسانة مسلحة (عمود الجسر)
  - النشاط الثالث: دراسة مقطع الطريق (مقطع عرضي)
    - النشاط الرابع: دراسة المدرج.
    - المحور الأول: ميكانيك (12 نقطة)
    - النشاط الأول (دراسة رافدة): (60نقاط)

نقترح دراسة إحدى روافد الجسر المنجزة من الخرسانة المسلحة والممثلة بالرسم الميكانيكي المبين في الشكل (02). ترتكز الرافدة ذات المقطع المستطيل على مسندين (A) و (B) حيث:(A) مسند مضاعف و (B) مسند بسيط.



#### المطلوب:

- A أحسب ردود الفعل عند المسدين A و
- 2) أكتب معادلات الجهد القاطع وعزم الانحناء على طول الرافدة.


#### اختبار في مادة: تكنولوجيا (هندسة مدنية) / الشعبة: تقني رياضي / بكالوريا تجريبي 2022 / الموضوع الأول

- (3) أرسم منحنيات الجهد القاطع وعزم الانحناء على طول الرافدة.
  - 4) استنتج القيمة العظمي لـ Tmax و 4
- 5) أحسب عرض مقطع الرافدة b علما أن: Tmax = 200 KN و Mfmax = 310 KN.m
  - $\overline{\tau} = 600 \, daN/cm^2$   $\sigma = 900 \, daN/cm^2$  .

#### 4 النشاط الثاني (دراسة نظام مثلثي): (60نقاط)

نقترح در اسة أحد أجزاء التغطية المتمثل في النظام المثلثي المحدد سكونيا ،المبين في الرسم الميكانيكي أدناه (الشكل 3) والمكون من قضبان زاوية مزدوجة (الـ).

يرتكز النظام على مسندين (A) و (B) حيث:(A) مسند مضاعف و (B) مسند بسيط.



Cos  $\beta$ =0.55 Sin  $\beta$ =0.832

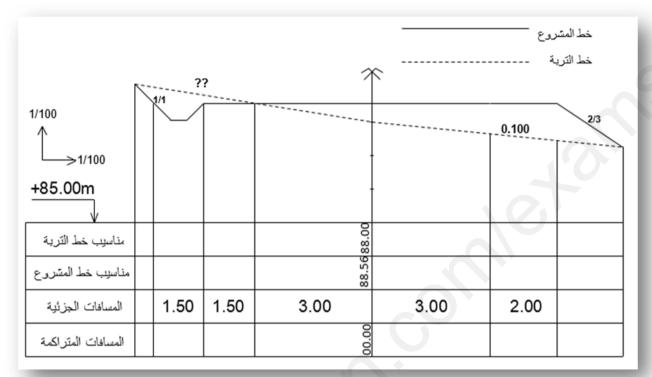
Cos  $\alpha$ =0.70' Sin  $\alpha$ =0.70' - <u>يعظى:</u>

#### المطلوب:

- 1) أحسب ردود الأفعال عند المسندين A و B.
- أحسب الجهود الداخلية في القضبان باستعمال الطريقة التحليلية وعين طبيعتها (تدون النتائج في جدول).
- من الجدول المرفق مقطع المجنب المناسب الذي يحقق المقاومة ، إذا علمت أن الإجهاد الأعظمي ( $\overline{\sigma} = 1800 daN / cm^2$  و الإجهاد المسموح به  $N_{max}=69.42 \ kN$

| التعيين   | ماد    | الأب   | المقطع               | L xx'                               | بالنسبة                        |   |
|-----------|--------|--------|----------------------|-------------------------------------|--------------------------------|---|
| L         | a (mm) | e (mm) | S (cm <sup>2</sup> ) | I <sub>/XX</sub> (cm <sup>4</sup> ) | $W_{/xx}$ , (cm <sup>3</sup> ) |   |
| 30×30×3   | 30     | 3      | 1,74                 | 1,4                                 | 0,65                           |   |
| 35×35×3,5 | 35     | 3,5    | 2,39                 | 2,66                                | 1,06                           | 1 |
| 40×40×4   | 40     | 4      | 3,08                 | 4,47                                | 1,55                           | ] |
| 45×45×4,5 | 45     | 4,5    | 3,9                  | 7,15                                | 2,2                            | 1 |
| 50×50×5   | 50     | 5      | 4,5                  | 10,96                               | 3,05                           | 1 |
| 60×60×6   | 60     | 6      | 6,91                 | 22,79                               | 5,29                           |   |
| 70×70×7   | 70     | 7      | 9,4                  | 42,3                                | 8,41                           |   |
| 80×80×8   | 80     | 8      | 12,27                | 72,25                               | 12,58                          | 1 |




الجدول المرفق

#### المحور الثاني: بناء (80نقاط)

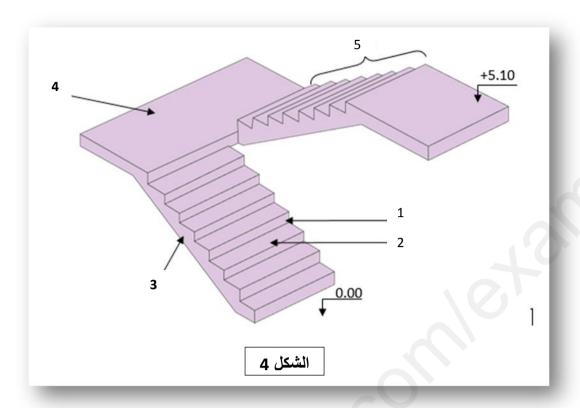
#### (1

#### النشاط الثالث: دراسة المقطع العرضى للطريق (05نقاط)

نعتبر المظهر العرضي المبين في الشكل أدناه.



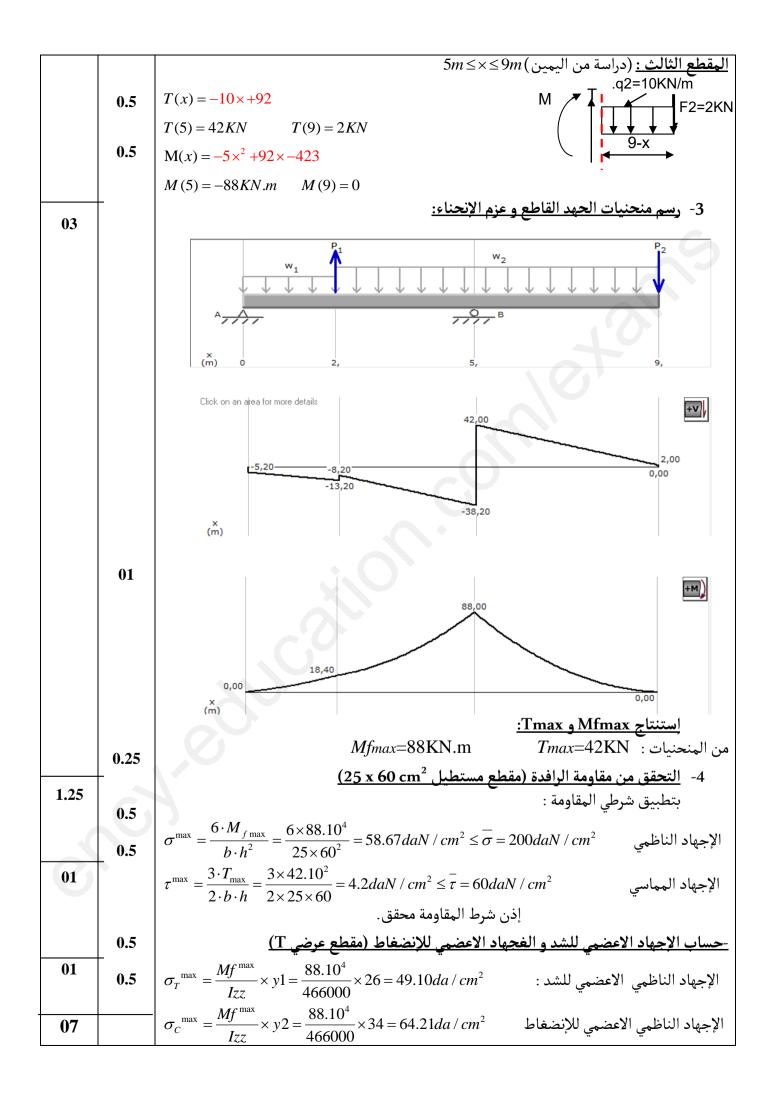
#### - <u>المطلوب:</u>


- 1) عرّف المظاهر العرضية للطريق.
- 2) أذكر خصائص المظاهر العرضية.
- 3) أتمم بيانات المظهر العرضي المرسوم على الشكل المرفق.

#### النشاط الرابع: دراسة المدرج (03نقاط)

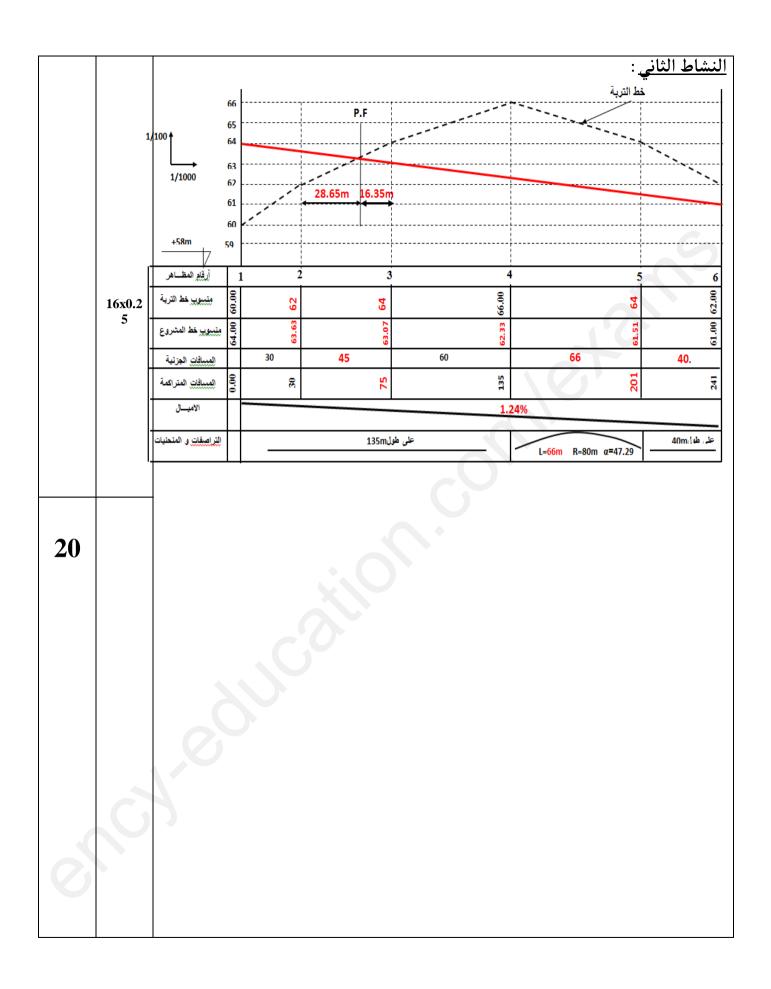
الصعود في الجسر المخصص للعابرين نستعمل المدرج المبين في الشكل "4".

#### <u> المطلوب:</u>


- 1) صنف هذا المدرج.
- 2) سمّ العناصر المرقمة، وأذكر دور العنصر 3
- $30 \, \mathrm{cm}$  لتصميم هذا العنصر استعملنا النموذج الممثل بالشكل "رقم4" ، إذا علمت ان ارتفاع الطابق هو الدرجة هو
  - أحسب ارتفاع القلبة وعدد الدرجات في كل قلبة .



#### إنتهى الموضوع الثاني


## الإجابة النموذجية لاختبار الباكالوريا التجريبي في التكنولوجيا — هندسة مدنية-الموضوع الاول

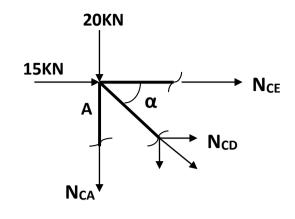
| (مـة  | العلا  | عناصر الإجـــــابة                                                                                      |
|-------|--------|---------------------------------------------------------------------------------------------------------|
| مجموع | مجزأة  | عن صر ۱ م جــــــــــــــــــــــــــــــــــ                                                           |
|       |        | الموضوع الاول                                                                                           |
|       |        | I - <u>الهيكانيك التطبيقية :</u><br>،                                                                   |
|       |        | المسألة الأولى:                                                                                         |
|       |        | 1- حساب ردود الافعال :                                                                                  |
|       | 0.25   | $\sum Fx = 0 \Rightarrow H_A = 0 \to 1$                                                                 |
|       | 0.25   | $\sum Fy = 0 \Rightarrow V_A + V_B = -F_1 + q_1(2) + q_2(7) + F_2 = -5 + 4(2) + 10(7) + 2 = 75KN \to 2$ |
|       |        | $\sum M /_{A} = 0 \Rightarrow -V_{B}(5) + F_{2}(9) + q_{2}(7)(5.5) - F_{1}(2) + q_{1}(2)(1) = 0$        |
|       | 0.25   | $V_B = \frac{2(9) + 10(7)(5.5) - 5(2) + 4(2)}{5} = \frac{401}{5} = 80.2KN$                              |
|       |        | $\sum M/_{B} = 0 \Rightarrow V_{A}(5) + F_{1}(3) - q_{1}(2)(4) + F_{2}(4) + q_{2}(7)(0.5) = 0$          |
|       | - 0.25 | $V_A = \frac{-5(3) + 4(2)(4) - 2(4) - 10(7)(0.5)}{5} = \frac{-26}{5} = -5.2KN$                          |
| 0.75  |        | VA + VB = -5.2 + 80.2 = 75KN                                                                            |
|       |        |                                                                                                         |
|       |        | $\frac{Mf(x)}{2}$ و عزم الإنحناء $\frac{T(x)}{2}$ و عزم الإنحناء -2                                     |
|       |        | $0 \le x \le 2m$ : الهقطع الأول                                                                         |
|       | 0.5    | T(x) = -4x - 5.2 ,q1=4KN/m                                                                              |
|       |        | T(0) = -5.2KN $T(2) = -13.2KN$                                                                          |
|       | 0.5    | $M(x) = -2x^2 - 5.2x$                                                                                   |
|       |        | M(0) = 0 $M(1) = -18.40 KN.m$                                                                           |
|       |        | VA=-5.2KN                                                                                               |
|       |        | $2m \le x \le 5m$ المقطع الثاني:                                                                        |
|       | 0.5    | T(x) = -10x + 11.8 a1=4KN/m a2=10KN/m                                                                   |
|       |        | T(2) = -8.2KN $T(5) = -38.2KN$                                                                          |
|       |        |                                                                                                         |
|       | 0.5    | $M(x) = -5 \times^{2} + 11.8 \times -22$                                                                |
|       |        | M(2) = -18.40 KN.m $M(5) = -88 KN.m$                                                                    |
|       |        | F1=5KN                                                                                                  |
|       |        |                                                                                                         |



| (مـة  | العلا |                                                                                                                                    |
|-------|-------|------------------------------------------------------------------------------------------------------------------------------------|
| مجهوع | مجزأة | عناصر الإجــــابة                                                                                                                  |
|       |       | الهسألة الثانية :                                                                                                                  |
|       |       | <u>1</u> حساب مقطع التسليح للشداد:                                                                                                 |
|       |       | As=max(Au; Aser)                                                                                                                   |
|       |       | • <u>الحساب في حالة ELU :</u>                                                                                                      |
|       | 0.5   | $f_{su} = \frac{f_e}{\gamma_s} = \frac{400}{1.15} = 348MPa$                                                                        |
|       | 0.5   |                                                                                                                                    |
|       | 0.5   | $A_{u} = \frac{N_{u}}{f_{su}} = \frac{0.44}{348} \times 10^{4} = 12.64 cm^{2}$                                                     |
|       |       | • <u>الحساب في حالة ELS :</u>                                                                                                      |
|       |       | $A_{ser} = \frac{N_{ser}}{\sigma_s}$                                                                                               |
|       |       |                                                                                                                                    |
|       | 0.5   | $\overline{\sigma} = \min\left(\frac{2}{3}f_e; 110\sqrt{\eta \cdot f_{t28}}\right)$                                                |
|       |       | $f_{t28} = 0.6 + 0.06 \times 25 = 2.1 MPa$                                                                                         |
|       | 0.5   | $\overline{\sigma} = \min\left(\frac{3}{2} \times 400; 110\sqrt{1.6 \times 2.1}\right) = \min\left(267; 201.63\right) = 201.63MPa$ |
|       | 0.5   | $A_{ser} = \frac{N_{ser}}{\overline{\sigma}} = \frac{0.32}{201.63} \times 10^4 = 15.87 cm^2$                                       |
|       |       |                                                                                                                                    |
|       | 01    | $A_s = \max(A_u; A_{ser}) = \max(12.64; 15.87)$                                                                                    |
|       |       | $A_s = 15.87cm^2$ (8T16) = $16.08cm^2$                                                                                             |
|       |       |                                                                                                                                    |
|       |       | Ø.T8                                                                                                                               |
|       | 01    | 8HA16                                                                                                                              |
|       | 01    |                                                                                                                                    |
|       |       | 30                                                                                                                                 |
|       |       |                                                                                                                                    |
|       |       |                                                                                                                                    |
|       |       | <ul> <li>التحقق من شرط عدم الهشاشة :</li> </ul>                                                                                    |
|       |       | $A_s \cdot f_e \ge B \cdot f_{t28}$                                                                                                |
|       | 0.5   | $A_s \ge B \cdot \frac{f_{t28}}{f_e} \Longrightarrow 16.08cm^2 \ge (900) \times \frac{2.1}{400}$                                   |
|       |       | $f_e$ 400 محققة $16.08cm^2 > 4.73cm^2$                                                                                             |
|       |       |                                                                                                                                    |
| 05    |       |                                                                                                                                    |
|       |       |                                                                                                                                    |
|       |       |                                                                                                                                    |

|    |      | I- الناء:                                                                                                                                                         |
|----|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |      | النشاط الأول :                                                                                                                                                    |
|    |      | 1- حساب السمت الإحداثي GAC و الطول LAc . و إستنتاج GAD:                                                                                                           |
|    |      | • السهت <u>Gac:</u>                                                                                                                                               |
|    |      | . $\Delta$ XAC = 450 $-$ 50 = 400m>0 $\Rightarrow$ $G_{AC} = 200 - g$ الربع الثاني $\Delta$ YAC = 50 $-$ 150 = -100m<0                                            |
|    | 01   | $tg(g) = \left  \frac{\Delta X_{AC}}{\Delta Y_{AC}} \right  = \left  \frac{400}{100} \right  = 4 \Rightarrow g = 84.40 gr \Rightarrow \boxed{G_{AC} = 115.60 gr}$ |
|    |      | $ Ig(g)  = \left  \frac{1}{\Delta Y_{AC}} \right  = \left  \frac{1}{100} \right  = 4 \Rightarrow g = 84.40gr \Rightarrow G_{AC} = 115.60gr$                       |
|    |      | • <u>الطول Lac:</u>                                                                                                                                               |
|    | 0.25 | $L_{AC} = \sqrt{\Delta X^2 + \Delta Y^2} = \sqrt{(400)^2 + (-100)^2} = \sqrt{17000} \Rightarrow \boxed{L_{AC} = 412.31m}$                                         |
|    |      | ● إستنتاح السهت GAD:                                                                                                                                              |
|    | 0.25 | $G_{AD} = G_{AC} + \alpha = 115.60 + 43.434 \Rightarrow G_{AD} = 159.034m$                                                                                        |
|    |      |                                                                                                                                                                   |
|    |      | 2- حساب إحداثيات النقطة B:                                                                                                                                        |
|    | 0.25 | $X_B = X_A + L_{AB}SinG_{AB} = 50 + 250Sin59.034 = 250m$                                                                                                          |
|    | 0.25 | $Y_B = Y_A + L_{AB}CosG_{AB} = 150 + 250Cos59.034 = 300m$                                                                                                         |
|    |      | B(250;300)                                                                                                                                                        |
|    |      | 3- حساب مساحة الأرضية المحددة بالمضلع ABCD بطريقة الإحداثيات القائمة :                                                                                            |
|    |      | $S = \frac{1}{2} \sum [X_n (Y_{n-1} - Y_{n+1})]$                                                                                                                  |
|    |      | $S = \frac{1}{2} \left[ X_A (Y_D - Y_B) + X_B (Y_A - Y_C) + X_C (Y_B - Y_D) + X_D (Y_C - Y_A) \right]$                                                            |
|    |      | $S = \frac{1}{2} \left[ 50(50 - 300) + 250(150 - 50) + 450(300 - 50) + 125(50 - 150) \right]$                                                                     |
|    | 01   | $S = \frac{1}{2} \left[ -12500 + 25000 + 112500 - 12500 \right]$                                                                                                  |
|    |      |                                                                                                                                                                   |
|    | +    | $S = \frac{1}{2}(112500)$ S=56 250m <sup>2</sup>                                                                                                                  |
|    |      | : حساب مساحة الأرضية المحددة بالمضلع $ABCD$ بطريقة الإحداثيات القطبية -4 $S=rac{1}{2}\sumigl[l_n\cdot l_{n+1}\cdot \mathrm{Sin}(\mathrm{G}_{n+1}-G_n)igr]$       |
|    |      | $S = \frac{1}{2} \sum \left[ l_n \cdot l_{n+1} \cdot \operatorname{Sin}(G_{n+1} - G_n) \right]$                                                                   |
|    |      | $S = \frac{1}{2} \left[ l_{AB} \cdot l_{AC} \cdot Sin(G_{AC} - G_{AB}) + l_{AC} \cdot l_{AD} \cdot Sin(G_{AD} - G_{AC}) \right]$                                  |
|    | _    | $S = \frac{1}{2} \left[ 250 \times 412.31 \times Sin(115.60 - 59.034) + 412.31 \times 125 \times Sin(159.034 - 115.60) \right]$                                   |
| 04 | 01   |                                                                                                                                                                   |
|    |      | $S = \frac{1}{2} [80003.59 + 32497.68]$                                                                                                                           |
|    |      | $S = \frac{1}{2}(112501.27)$ S=56 250.64m <sup>2</sup>                                                                                                            |
|    |      | _                                                                                                                                                                 |
|    | 1    |                                                                                                                                                                   |




#### الإجابة النموذجية وسلم التنقيط

| المجموع | العلامة<br>مجزئة | عناصر الاجابة                                                                                                                                                                                                                   |
|---------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12      |                  | I - الهيكانيك التطبيقية :                                                                                                                                                                                                       |
| 06      |                  | النشاط الأول<br>1) حساب ردود الأفعال                                                                                                                                                                                            |
|         | 0.5              | $\Sigma FY = 0 \Rightarrow VA + VB - 65 - 65 - 50 \times 10 = 0 \Rightarrow VA + VB = 630KN$ $VA = VB = \frac{630}{2} = 315KN$                                                                                                  |
|         |                  | ر معادلات الجهود الداخلية $0 \le x \le 1$ (يسار) $0 \le T = 0 \Rightarrow -T - 50x - 65 = 0$                                                                                                                                    |
|         | 0.5              | $\Rightarrow T = 50x + 65 \qquad T(0) = 65KN \qquad T(1) = 115KN$                                                                                                                                                               |
|         | 0. 5             | $\sum M/j = 0 \Rightarrow -M - 65x - 50x^{2}/2 = 0$ $\Rightarrow M(x) = 25x^{2} + 65x \qquad M(0) = 0 \qquad M(1) = 90KN.$                                                                                                      |
|         | 0.5              | $\Sigma FY = 0 \Rightarrow -T - 50x - 65 + 315 = 0$ $\Rightarrow T = 50x - 250  T(1) = -200KN  T(9) = 200KN$ $T(x) = 0 \Rightarrow x = 5m$                                                                                      |
|         |                  | $\sum M/j = 0 \Rightarrow -M + 315(x - 1) - \frac{50x^2}{2} - 65x = 0$                                                                                                                                                          |
|         | 0. 5             | $\Rightarrow M(x) = -25x^2 + 250x - 315 \qquad M(1) = -90  M(9) = -90KN$                                                                                                                                                        |
|         | 0.25             | $M^{max} = M(5) = 310 KN. m$ $0 \le x \le 1$ (یمین) 2 القطع 2                                                                                                                                                                   |
|         | 0. 5             | $\sum FY = 0 \Rightarrow T - 50x - 65 = 0$ $\Rightarrow T = 50x + 65  T(0) = 65KN  T(1) = 115KN$ $\sum M/j = 0 \Rightarrow M + \frac{50x^2}{2} + 65x = 0$ $\Rightarrow M(x) = -25x^2 - 65x \qquad M(0) = 0 \qquad M(1) = -90KN$ |
|         | 0. 5             | $\Rightarrow M(x) = -25x^2 - 65x \qquad M(0) = 0 \qquad M(1) = -90KN$                                                                                                                                                           |

# 3) رسم منحنيات الجهد القاطع و عزم الإنحناء على طول الرافدة 0.5 x (m) 0.5 $M_{ m f}^{ m \ max}$ استنتاج عزم الانحناء الأعظمي الأعظمي والجهد القاطع (4 $Mf^{max} = 310KN.m$ $T^{max} = 200KN$ 0.25 5) حساب عرض مقطع الرافدة b $\sigma = \frac{M^{max}}{\frac{I_{x-x'}}{b}} \le \overline{\sigma} \implies \frac{M^{max}}{\frac{b \times 8b^3}{12}} \le \overline{\sigma} \implies b^3 \ge \frac{3M^{max}}{2\overline{\sigma}} \implies b^3 \ge 5166.67$ 0.25 0.25 $b \ge 17.28 \ cm$ $\tau = \frac{3T}{2 \times 2b^2} \le \bar{\tau} \quad \Rightarrow \quad b^2 \ge \frac{3T}{4\tau}$ 0.25 $0.25 \quad \Rightarrow \quad b \ge \sqrt{\frac{3 \times 200.10^2}{4 \times 600}} \quad \Rightarrow \quad b \ge 5cm$ b=20cm نختار $b \ge 17.28$ cm

|   |      | النشاط الثاثى                                                                    |
|---|------|----------------------------------------------------------------------------------|
| 4 |      |                                                                                  |
| 4 |      | 1. حساب ردود الفعل:                                                              |
|   | 0.25 | $\sum F_{x} = 0$                                                                 |
|   | 0.25 | $H_A + 15 - 15 = 0$                                                              |
|   | 0.25 | $H_A = 0kN$                                                                      |
|   |      | $\sum F_{y} = 0$                                                                 |
|   | 0.25 | $V_A + V_B = 110KN$                                                              |
|   | 0.25 | $\sum M_{/A} = 0$                                                                |
|   | 0.25 | $15*3+5*3+10*5+5*7+20*10-15*3+50*5-10V_B = 0$                                    |
|   | 0. 5 | $10V_B = 550$                                                                    |
|   |      | $V_B = 55kN$                                                                     |
|   | 0.25 | $\sum M$                                                                         |
|   | 0.25 | $\sum_{A} M_{AB} = 0$ $W_{AB} = 0$ $W_{AB} = 0$ $W_{AB} = 0$ $W_{AB} = 0$        |
|   | 0.25 | $V_A *10-15*3-5*3-10*5-5*7-10*20+15*3-50*5=0$                                    |
|   |      | $10V_A = 550$ $V_A = 55kN$                                                       |
|   |      | $V_A = 33kIV$                                                                    |
|   |      | التحقيق:                                                                         |
|   | 0.25 | $V_A + V_B = 55 + 55 = 110KN$                                                    |
|   |      | 2. حساب الجهود الداخلية في القضبان:                                              |
|   | 0.25 | العقدة ٨:                                                                        |
|   |      | $N_{AC}$                                                                         |
|   | 0.25 | $\sum_{X} F_X = 0$                                                               |
|   | 0.25 | $N_{AD} + H_A = 0$                                                               |
|   |      | $N_{AD} = -H_A \Rightarrow N_{AD} $ $N_{AD} = 0kN$ $N_{AD} = 0kN$ $N_{AD} = 0kN$ |
|   |      | $\sum F_{Y} = 0$                                                                 |
| O |      | $N_{AC} + V_A = 0$                                                               |
|   | 0. 5 | $N_{AC} = -V_A \Longrightarrow N_{AC} = -55kN$                                   |
|   |      | انضغاط) AC A AC النضغاط)                                                         |
|   |      |                                                                                  |
|   |      |                                                                                  |

#### العقدة C:

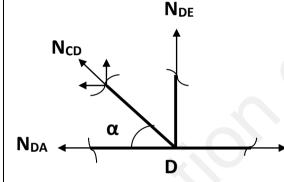


$$\sum F_{Y} = 0$$

$$N_{CE} + N_{CD} * \cos \alpha + 15 = 0$$

$$N_{CE} = -49.50 * 0.707 - 15$$

$$N_{CE} = -50kN$$
 (انضغاط)


$$\sum F_X = 0$$

$$-N_{CA} - N_{CD} * \sin \alpha - 20 = 0$$

$$N_{CD} = \frac{-55 - 20}{0.707}$$

$$N_{CD} = 49.50kN$$

#### العقدة D:



$$\sum F_X = 0$$
 $N_{DF} - N_{DA} - N_{DC} * \cos \alpha = 0$ 
 $N_{DF} = N_{DC} * \cos \alpha \Rightarrow \boxed{N_{DF} = 35kN}$ 
(شد)

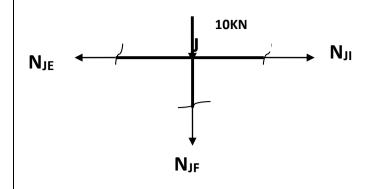
 $\sum F_{v} = 0$  $N_{DF} + N_{DC} * \sin \alpha = 0$  $N_{DE} = -N_{DC} * \sin \alpha$  $N_{DF} = -49.50*0.707$ 

$$\begin{bmatrix} N_{DE} = -35KN \\ \text{(انضىغاط)} \end{bmatrix}$$

العقدة Е:

Nec 05KN 
$$E \longrightarrow N_{EJ}$$
 
$$\sum_{N_{EE}.5-N_{ED}-N_{EF}} *\sin\beta = 0$$
 
$$N_{EF} = 0,992 \times (-176,37)$$

$$N_{EF} = \frac{-5 - N_{ED}}{\sin \beta}$$
  $\Rightarrow N_{EF} = \frac{-5 + 35}{0.832}$   $\Rightarrow N_{EF} = \frac{-5 + 35}{0.832}$   $\Rightarrow N_{EF} = \frac{-5 + 35}{0.832}$ 


$$N_{EJ} - N_{EF} * \cos \beta - N_{EC} = 0$$

$$N_{EJ} = N_{EG} - N_{EF} * \cos \beta$$

$$N_{EJ} = N_{EC} - N_{EF} * \cos \beta$$

$$N_{EJ} = -50 - 36.06 * 0.554 \Rightarrow N_{EJ} = -69.42 KN$$
(identified by the solution of the solution)





$$\sum F_X = 0$$

$$N_{JI} - N_{JE} = 0$$

$$N_{JI} = N_{JE}$$

$$\sum F_Y = 0$$

$$-N_{JF} - 10 = 0$$

$$N_{JF} = -10KN$$

(انضغاط)

### 3. تدوين النتائج في جدول:

| الطبيعة | الشدة | القضيب |
|---------|-------|--------|
| ضغط     | 55    | AC=BG  |
| تركيب   | 0     | AD=BH  |
| شد      | 49.50 | CD=GH  |
| ضغط     | 50    | CE=CI  |
| ضغط     | 35    | DE=HI  |
| شد -    | 35    | DF=HF  |
| شد      | 36.06 | EF=IF  |
| ضغط     | 69.42 | EJ=IJ  |
| ضغط     | 10    | FJ     |

| 5 | 1                | II- البناء: النشاط الأول<br>النشاط الأول<br>1) المظاهر العرضية للطريق: هي سلسلة من المقاطع في المستوى العمودي ، متعامدة مع المظهر الطولي                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | _                | عددها غير محدد مبدئيا و تكون ضرورية كلما تغيرت أشكال المظهر العرضي سواء بالنسبة للتربة                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   |                  | الطبيعية أو لخط المشروع، والهدف من إنجازها هو تحديد حجم أعمال التجريفات.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | 1                | <ul> <li>2) خصائصها: - ضرورة التوافق مع تضاريس الميدان.</li> <li>- ضرورة السماح بسيلان المياه و ذلك بإستعمال ميل عرضي للقارعة من محورها إلى الجانبين.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   |                  | - سروره است اسپول المياه و تمد بېستان الي عرصي سارت الله الميان الله                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   | 0. 25            | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   |                  | 1/100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   |                  | →1/100<br>0.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |                  | +85.00m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   |                  | 88 88 88 88 88 88 32 4 مناسيب خط التربة 82 31 31 4 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 0.125x22<br>2.75 | المسافات الجزنية       المسافات الجزنية       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80       80 |
|   | 0.12             | 00 00 00 00 00 00 00 00 00 00 00 00 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   |                  | النشاط الثانى                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3 | 0.5              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 0. 5             | 1) التصنیف: مدارج مستقیمة ذو قلبتین متوازیتین                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | 1. 5             | 2) تسمية العناصر :<br>1 القائمة                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |                  | 2 النائمة<br>3 الحصيرة                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   |                  | و الخصيره<br>4 فاصل ، فاصل الارتياح                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   |                  | 4 فاصل ، فاصل الإربياع<br>5 قلبة                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   |                  | ر سب-<br>- دور العنصر رقم 3 :تحمل المدرج (وهي بلاطة مائلة)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 0. 5             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |                  | $h = \frac{64-g}{2} = 17cm  h$ : حساب ارتفاع الدرجة (3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   | 0. 5             | حساب عدد الدرجة في كل قلبة: 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   |                  | $n = rac{H}{h} = rac{510}{17} = 30$ : عدد الدرجات في كل المدرج                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |