الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: ماي 2014

وزارة التربية الوطنية

امتحان بكالوريا_ت_التعليم الثانوي

الشعبة: تقني رياضي

المدة: 04 سا و30 د

اختبار في مادة: التكنولوجيا (هندسة الطرائق)

على المترشح أن يختار أحد الموضوعين التاليين: الموضوع الأول

التمرين الأول:

فحم هيدروجيني غير مشبع A كتلته المولية 70 g/mol ويتكون من 85.7% من الكربون و 14.3% من الهيدروجين

- أوجد الصيغة المجملة للمركب A.
- H = 1 g/mol , C = 12 g/mol :
- C_5H_{10} علما أن صيغته المجملة هي C_5H_{10} علما أن صيغته المجملة هي C_5H_{10} .
 - 3. انطلاقا من المركب A نجرى سلسلة التفاعلات التالية:

1) A +
$$O_3$$
 $\xrightarrow{\text{H}_2O}$ Ethanal + Propanal

- 2) Ethanal $\frac{\text{LiAlH}_4}{\text{H}_2\text{O}}$ B
- 3) B + HBr \longrightarrow C + H₂O
- 4) C + Mg D
- 5) D + Methanal → E
- 6) E + $H_2O \longrightarrow F + MgBr(OH)$
- 7) F مندة قوية → G

1. أعد كتابة المعادلات مبينا طبيعة وصيغة (النصف المفصلة) للمركبات: K.G.F.E.D.C.B.A

- 2. ماهو نوع كل من التفاعل (2) و(4) ؟
- 3. ما هو الوسيط المستعمل في التفاعل (4) ؟
- 4. أعط صيغة المؤكسدات التي يمكن استعمالها لتحقيق التفاعل رقم (7)
 - 5 . كيف يمكن الكشف تجريبيا عن المركب K ؟
 - 6. أكمل التفاعل التالي مبينا صيغة كل من X و Y :

 $HO-(C_6H_4)-COOH$ التر غال نوع من الأقمشة نحصل عليه من بلمرة المركب 7.

الكتب معادلة تفاعل البلمرة ما نوعها ؟

البوليمير يتكون من ثلاث وحدات بنائية بالله مقطع من هذا البوليمير يتكون من ثلاث وحدات بنائية بالمثل

التمرين الثاني:

ببتيد A يتكون من الأحماض الأمينية التالية:

1/ صنف الأحماض الامينية السابقة .

PH = 1 و PH = PH و PH = 1 و PH = PH

PH = 6 و Lys داخل جهاز الهجرة الكهربائية عند Val و Lys نضع مزيج من

☞ وضح بالرسم مواقع هذه الأحماض الأمينية على شريط الهجرة الكهربائية .

$$PH_i = (Val) = 5.96$$
 $PH_i = (Lys) = 9.74$

Tyr مبينا نوع التماكب الموجود في Tyr ل D و D مبينا نوع التماكب الموجود في

5/ أكتب الصيغة الكيميائية للببتيد Tyr-Lys-Val) A ع توضيح الروابط المتشكلة .

6/ اكتب الصيغ الأيونية لـ Lys وذلك عند تغير قيمة PH من 1 إلى 13.

7/ اكتب الصيغ الأيونية للببتيد A وذلك عند تغير قيمة PH من 1 إلى 13.

NAOH (40%) و الصود (1 CuSO₄ (1%) و المنود A بعامل محلول من الببتيد 1 المناجز 1 المناجز 1

ب / ماهي النتيجة المنتظر الحصول عليها ؟ أعط تفسيرا لذلك .

9/ هل يعطي هذا الببتيد نتيجة ايجابية مع كاشف كزانتوبروتييك؟ علل ؟

الله المات الإجابة بنعم ما هي هذه النتيجة الإيجابية ؟ أعط تفسير الها ؟ اعط الصيغة الكيميائية لكاشف كز انتوبروتييك .

10/ أكمل التفاعل التالي:

 $A + \dots H_2O \longrightarrow H^+ \longrightarrow \dots + \dots + \dots$

التمرين الثالث:

//]

1/ إذا ارتفعت درجة الحرارة الماء داخل مسعر حراري هل نعتبر التحول ماص أم ناشر للحرارة ؟

 ΔH تكون سالبة أو موجبة Δ

نالية: المعطيات التالية و C_2H_2 من الاستلين C_2H_2 من الاستلين عن احتراق عن المعطيات التالية:

- → حجم الماء الموضوع في المسعر 500ml.
 - ⇒ التغير في درجة الحرارة هو °47.5C.

. C_2H_2 استنتج كمية الحرارة المولية - ΔH_2 - لتفاعل احتراق الاستلين ΔH_2

 C_2H_2 لغاز الأسيتلين لحرارية C_{C2H2} لغاز الأسيتلين 5 / احسب

 C_{eau} = 4.185 j/g.k 1 g/ml تعطى الكتلة الحجمية للماء

//II

 \cdot الاحتراق التام لـ 1 مول من الأستيلين $_{\rm C_2H_2}$ عند الدرجة $_{\rm C_2H_2}$ يحرر طاقة

1/ أكتب معادلة احتراق الأستيلين C2H2.

2/ أحسب أنثالبي تفاعل احتراق الأستيلين C2H2 عند الدرجة 25C° .

$$\Delta H_{f}^{\circ}$$
 (CO₂) $_{(g)}$ = - 393.5 kJ/mol ΔH_{f}° (H₂O) $_{(l)}$ = - 286 kJ/mol : يعطى ΔH_{f}° (C₂H₂) $_{(g)}$ = + 227 kJ/mol

.25c° عند C_2H_2 عند التغيير في الطاقة الداخلية ΔU للتفاعل احتراق الأستيلين أطاقة الداخلية ΔU

 $60~{\rm C}^{\circ}$ عند ${\rm C}_2{\rm H}_2$ أحسب أنثالبي تفاعل احتراق الأستيلين ${\rm C}_2{\rm H}_2$ عند

المركب	CO ₂ (g)	H2O (l)	$O_2(g)$	$\left(C_2H_2\right)_{(g)}$
C _v J/K.mol	28.89	66.89	21.69	35.37

5/ أحسب طاقة الرابطة ك≡ د باستعمال المعطيات التالية :

6 / قارن بين النتيجة التجريبية الأنطالبي احتراق الأسيتيلين المحسوبة في السؤال 1// $_{4}$ والنتيجة النظرية المحسوبة في السؤال 1// $_{2}$

//III لدينا عند °C و التفاعلات التالية:

$$C_2H_2(g) + H_2O(l) \longrightarrow CH_3-CHO(l)$$
 $\Delta H_1=?$

CH₃- CHO(l) + 1/2 O₂(g)
$$\longrightarrow$$
 CH₃COOH(l) Δ H₂ = -70 Kcal / mol

المركب	$H_2O_{(l)}$	$C_2H_{2(g)}$	CH₃COOH
ΔH _f (Kcal/ mol)	-68	+55	-116

- 1- أحسب أنتا لبي تشكيل CH3-CHO_(L) عند
 - 2- أحسب ΔΗ1.

رارة P_i يتمدد 1 مول من غاز مثالي عكسيا من الضغط P_i atm إلى الضغط النهائي P_i عند درجة حرارة T=0 C.

- 1- أحسب العمل المبذول من طرف الغاز المثالي.
- ΔU و ΔH للغاز المثالي.
- 3- ما هي كمية الحرارة المتبادلة بين الوسط الخارجي والغاز المثالي.

R = 8,314 J/mol.K

 $^{\circ}$ عند $^{\circ}$ مسعر حراري سعته الحرارية $^{\circ}$ $^{\circ}$ مسعر حراري سعته الحرارية $^{\circ}$ $^{\circ}$ عند $^{\circ}$ $^{\circ}$ ماء عند $^{\circ}$ $^{\circ}$ ماء عند $^{\circ}$ $^{\circ}$ $^{\circ}$

 T_{eq} أحسب درجة حرارة التوازن T_{eq} ؟

يعطى السعة الحرارية للماء 4.185 j/g.k

الموضوع الثانى:

التمرين الأول:

A
$$\frac{\text{Cu}}{300 \, ^{\circ}\text{C}}$$
 CH₃ -CHO +

A
$$\frac{\text{acid}}{170 \,^{\circ}\text{C}}$$
 B + H₂O

- . ${
 m E}$, ${
 m D}$, ${
 m C}$, ${
 m B}$, ${
 m A}$ المفصلة للمركبات ${
 m E}$, ${
 m D}$, ${
 m C}$, ${
 m B}$, ${
 m A}$
 - . والماء \mathbf{F} والماء \mathbf{E} عنواعل المركب \mathbf{F} والماء \mathbf{E}
 - أ) اكتب معادلة التفاعل محددا المركب F مع ذكر إسم التفاعل و خصائصه .
 - ب) استنتج مردود التفاعل, مع التعليل .
 - 3 بلمرة المركب B تعطى البوليمير G
 - أ) اكتب تفاعل البلمرة مع ذكر اسم البوليمير.
 - ب) مثل مقطعا من البوليمير G يحتوي على 3 وحدات.
 - ج) أذكر ثلاثة استعمالات لهذا البوليمير.
- د) إذا علمت أن درجة بلمرة المركب G هي G احسب الكتلة المولية لهذا البوليمير .

4 أكتب المعادلات التي تسمح بالحصول على حمض الفتاليك والمركب C و كواشف أخرى.

التمرين الثاني:

I / لديك ثلاثي الغليسيريد الآتي:

CH2-O-C-(CH2)7-CH=CH-(CH2)7-CH3

1) هل ثلاثي الغليسيريد متجانس.

CH -O-C-(CH₂)₇-CH=CH-(CH₂)₇-CH₃

2) استنتج صيغة الأحماض الذهنية والغليسيرول الموجودة في ثلاثي الغليسيريد

CH2-O-C-(CH2)14-CH3

3) أعط الكتابة الرمزية و أكتب الصيغة الطبولوجية لهذه الأحماض الذهنية

4) أكتب معادلة التصبن بـ KOH ثم أحسب دليل التصبن النظري لثلاثي الغليسيريد.

5) احسب دليل اليود النظري لثلاثي الغليسيريد.

6) أكتب معادلة تفاعل اماهة ثلاثي الغليسيريد

I: 126.9 g/mol K: 39 g/mol

O: 16 g/mol H: 1 g/mol C: 12 g/mol

<u>/II</u>

1) يعطى التحليل المائي لمول واحد من ثلاثي الغليسيريد مول من الغليسرول وثلاث مولات من الحمض الدهني A - أكتب صبغة الغليسر ول و الصبغة العامة لثلاثي الغليسريد

2) الحمض الدهني A عبارة عن حمض مشبع تعديل 2,1g منه يتطلب 16,4 mL مولاري أ- أوجد صيغة الحمض الدهني A

ب – استنتج صيغة ثلاثي الغليسيريد

<u>/III</u>

السرينSer حمض أميني سلسلته الجانبية Ser

أ- اكتب صيغة L السرين

ب- هل السرين فعال ضوئيا علل إجابتك

ج- هل السرين مركب أمفوتيرى. علل إجابتك

د- اكتب الأشكال الشاردية الثلاثة للسرين و سم كل واحدة منها

9.15 = pK_{NH2} و 2.21 = pK_{COOH} و 9.15 pHi ه- احسب الـ pHi

 ${
m IV}$ أكمل التفاعلات التالية مبينا صيغ المركبات المجهولة ومبينا نوع كل تفاعل كيميائى .

$$2 \stackrel{\triangle}{=}$$
 HOOC — CH -CH₂-S — S-CH₂- CH — COOH + $2 \stackrel{+}{\text{H}}^+$
NH₂ NH₂

$$\underline{\mathbf{A}} + \underline{\mathbf{B}} \longrightarrow \mathsf{HS-CH_2-CH-CONH-CH_2-COOH} + \mathsf{H_2O}$$
 $\mathsf{NH_2}$

$$\frac{\mathbf{E}}{\mathbf{E}} + \mathbf{H} \mathbf{N} \mathbf{O}_{2} \longrightarrow \mathbf{H} \mathbf{O} - \mathbf{C} \mathbf{H} - \mathbf{C} \mathbf{O} \mathbf{O} \mathbf{H} + \mathbf{N}_{2} + \mathbf{H}_{2} \mathbf{O}$$

$$\mathbf{O} \mathbf{H}$$

$$\mathbf{E} + \mathbf{O} \mathbf{H} - \mathbf{P} - \mathbf{O} \mathbf{H} \longrightarrow \mathbf{F} + \mathbf{H}_{2} \mathbf{O}$$

التمرين الثالث:

من أجل قياس الحرارة المولية لذوبان KOH في الماء نستخدم المواد و الأدوات التالية

المركبات و المحاليل الكيميائية	الأدوات المخبرية
KOH من 11.22 g	مسعر حراري calorimètre – مخبار
100 ml من الماء	مدرج – ترمومتر - بیشر

تأخذ 100 ملل من الماء ونضعها في مسعر

 $T_i = 20~^{\circ}$ C نقيس درجة الحرارة الابتدائية T_i للمسعر والماء فنجدها T_i

تزن ¥ 11.22 من KOH ثم نضعها في المسعر الحراري.

 $T_{\rm f} = 46~{}^{\circ}{\rm C}$ ننتظر حتى الذوبان التام لـ KOH ثم نقيس درجة الحرارة التوازن النهائية ${}^{\circ}{\rm C}$

1/ أكتب معادلة تفاعل الذوبان الحادث.

 $\rho_{H2O} = 1 \text{g/cm}^3$ الماء الماء المستعملة الماء الماء الماء المستعملة الماء المستعملة الماء المستعملة الماء المستعملة الماء المستعملة المستع

3/ أحسب كمية الحرارة الممتصة من طرف الماء.

4 / أحسب كمية الحرارة الناتجة من تفاعل الذوبان .

5/ استنتج الأنطالبي المولي لتفاعل الذوبان.

6/ أحسب السعة الحرارية الكتلية لـ KOH.

السعة الحرارية للمسعر 200.46 J/K

تعطي

السعة الحرارية للماء 4.185 j/mol.K

K: 39 g/mol H: 1 g/mol O: 16 g/l

التمرين الرابع:

I- لديك التفاعل التالى:

$$2H_2S + SO_2$$
 \longrightarrow $3S + 2H_2O$ ΔH_1 (g) (g)

 25° C احسب انطالبي ΔH_1 للتفاعل السابق عند ΔH_1 علما أن

$$H_2S + 3/2O_2$$
 \longrightarrow $SO_2 + H_2O$ $\triangle H_2 = -562,2 \text{ KJ/mol}$ (g) (g) (l)

 $\Delta H_f(SO_2)_g = -299 \text{ kJ.mol}^{-1}$ $\Delta Hvap(H_2O) = 44 \text{ kJ.mol}^{-1}$

25°CE(S-H) احسب انطالبي تفكك الرابطة (2 علما أن:

О-Н	S=O	O=O	Liaison
463	539	498	ΔH _d kJ.mol ⁻¹

- ك الأول. $\Delta H_1 \Delta U_1$ الأول. (3)
- لتفاعل الثاني. ΔH_{333} ΔH_{298} الثاني. 4

$$C_{P \text{ (H2O)}} = 75.2 \text{ J/mol.K}$$
 . $C_{P \text{ (O2)}} = 29.4 \text{ J/mol.K}$. $C_{P \text{ (SO2)}} = 42 \text{ J/mol.K}$. $C_{P \text{ (H2S)}} = 34.6 \text{ J/mol.K}$

يعطى : $\Delta H_f(H_2S)_g$ يعطى : يعطى) أحسب أنطالبي التشكيل

$$S_{(S)} + O_{2(g)}$$
 \rightarrow $SO_{2(g)}$ $\Delta H = -70.96 \text{ Kcal/mol}$
 $H_{2(g)} + \frac{1}{2} O_{2(g)}$ \rightarrow $H_2O_{(l)}$ $\Delta H = -286 \text{ Kj/mol}$

II- لديك معادلات التفاعل التالية:

$$N_{2(g)} + O_{2(g)} \longrightarrow 2NO_{(g)}$$
 $\Delta H_{r1} = 181KJ$
 $N_{2(g)} + 2O_{2(g)} \longrightarrow 2NO_{2(g)}$ $\Delta H_{r2} = 67,8KJ$
 $2N_{2(g)} + 5 O_{2(g)} \longrightarrow 2N_{2}O_{5(g)}$ $\Delta H_{r3} = 30.2KJ$

التالي: ΔH_r التفاعل التالي ΔH_r

$$4NO_{(g)} + 3 O_{2(g)} \longrightarrow 2N_2 O_{5(g)}$$

. $N_2\,O_{5(g)}$ و $NO_{2(g)}$ و $NO_{(g)}$. استنتج أنطالبيات التشكيل لكل من

 $100~{\rm C}^{\circ}$ لنخذ 1 مول من غاز الآزوت N_2 (نعتبره غازا مثاليا) حيث نقوم برفع درجة حرارة الغاز من N_2 إلى أحسب كل من كمية الحرارة Q التي يكتسبها النظام و التغير في الأنطالبي وذلك في الحالتين

- 1 / حالة تحول ثابث الحجم Isochore .
- 2 / حالة تحول ثابث الضغط Isobare

$$C_P(N_2)_g = 33 \text{ j/mol.K}$$
 $R = 8.31 \text{ j/mol.K}$

الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: ماي 2014

امتحان بكالوريا_ت_التعليم الثانوي

الشعبة: تقني رياضي

وزارة التربية الوطنية

المدة: 04 سا و30 د

اختبار في مادة: التكنولوجيا (هندسة الطرائق)

على المترشح أن يختار أحد الموضوعين التاليين:

الموضوع الأول

<u>التمرين الأول:</u>

1. إيجاد الصيغة المجملة:

$$\frac{M}{100\%} = \frac{12 \cdot x}{\% C} = \frac{y}{\% H}$$

$$\frac{M}{100} = \frac{12 \cdot x}{85.7} \implies x = 5$$

$$\frac{M}{100} = \frac{y}{\% H} \implies y = 10$$

 C_5H_{10} هي المحملة هي C_5H_{10} علما أن صيغته المجملة هي .2

3. سلسلة التفاعلات:

2) Ethanal
$$\xrightarrow{\text{LiAIH}_4}$$
 CH3 - CH2 - OH

6) E +
$$H_2O$$
 \longrightarrow CH3 - CH2 - CH2 - OH + $MgBr(OH)$

- 2. نوع التفاعل (2) هو إرجاع الألدهيدات
- ☞ نوع التفاعل (4) هو تحضير المركبات العضوية المغنزيومية (تفاعل غرينيارد)

3. الوسيط المستعمل في التفاعل (4) هو الإيثر الجاف R-O-R.

4. صيغة المؤكسدات التي يمكن استعمالها لتحقيق التفاعل رقم (7) هي برمنغنات البوتاسيوم $KMnO_4$ المركزة أو ثاني كرومات البوتاسيوم $K_2Cr_2O_7$ المركزة .

5. المركب K سيتون يمكن الكشف تجريبيا عليه باستعمال كاشف DNPH و فهلينغ حيث:

يعطى لون أصفر بلوري =
$$DNPH + K$$

K + كاشف فهلينغ = يعطى نتيجة سلبية.

6. اكمال التفاعل مبينا صيغة كل من X و Y :

OH + CH₃-OH
$$\frac{H_2SO_4}{140 \, ^{\circ}C}$$
 O— CH₃ + H_2O

 $HO - (C_6H_4) - COOH$ الترغال نوع من الأقمشة نحصل عليه من بلمرة المركب.

🦑 معادلة تفاعل البلمرة, ما ؟

n HO –
$$(C_6H_4)$$
 – COOH \longrightarrow O – (C_6H_4) – CO \xrightarrow{n} + m H₂O

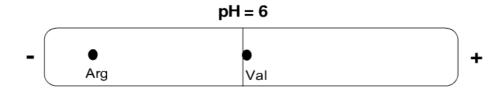
توعها بلمرة بالتكاثف

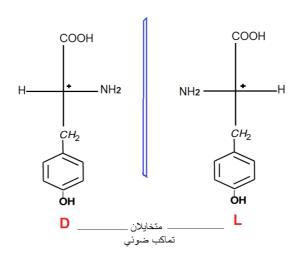
البوليمير يتكون من ثلاث وحدات بنائية .

التمرين الثاني:

1/ Val مض أميني ذو سلسلة كربونية بسيطة . Lys حمض أميني قاعدي . Tyr حمض أميني عطري

$$PH=1$$
 و $PH=PH_i$ و $PH=PH_i$ و $PH=PH_i$


pH = 1	рНi	pH = 12	
O C OH	0=0	0 0	
H ₃ N CH ₂	+ CH CH2	H_2N CH_2	
он	ОН	о́н	


PH = 6 داخل جهاز الهجرة الكهربائية عند Val و Lys نضع مزيج من Val

☞ مواقع هذه الأحماض الأمينية على شريط الهجرة الكهربائية .

$$PH_i = (Val) = 5.96$$
 $PH_i = (Lys) = 9.74$

Tyr فيشر D و L ل Tyr مبينا نوع التماكب الموجود في L

5/ الصيغة الكيميائية للببتيد Tyr-Lys-Val) A ع توضيح الروابط المتشكلة .

$$\begin{array}{c|c} H & O & H & O \\ I & II & I & II \\ NH_2-C & C-NH-C & C-NH-C-COOH \\ \hline CH_2 & (CH_2)_4 & CH_3 \\ \hline OH & OH \\ \end{array}$$

 $_{0}$ اكتب الصيغ الأيونية لـ $_{0}$ وذلك عند تغير قيمة PH من 1 إلى 13 .

7/ الصيغ الأيونية للببتيد A وذلك عند تغير قيمة PH من 1 إلى 13.

NAOH (40%) و الصود (1%) و المحاول من الببتيد A بكبريتات النحاس (1%) المحاول من الببتيد (1%)

أ- اسم التفاعل اللوني المنجز بيوري ب- النتيجة المنتظر الحصول عليها ظهور لون بنفسجي ارغواني - تفسير: تشكل معقد بين ايون النحاس والروابط الببتدية للببتيد A

9/ نعم يعطي هذا الببتيد نتيجة ايجابية مع كاشف كزانتوبروتييك

☞ هذه النتيجة الإيجابية هي اللون الأصفر ثم البرتقالي

التفسير دخول مجموعة النيثرو في الحلقة العطرية .

THNO3 + NaOH الصيغة الكيميائية لكاشف كزانتوبروتييك الماكنية الكيميائية لكاشف كزانتوبروتييك

10/ إكمال التفاعل:

A + 2 H₂O
$$\xrightarrow{H^+}$$
 $\xrightarrow{H_2N^-CH_2}$ $\xrightarrow{CH_2}$ $\xrightarrow{CH_2N_4}$ $\xrightarrow{CH_2N_4}$ $\xrightarrow{CH_2N_4}$ $\xrightarrow{CH_3N_4}$ $\xrightarrow{CH_3N_4}$ $\xrightarrow{CH_3N_4}$ $\xrightarrow{CH_3N_4}$ $\xrightarrow{CH_3N_4}$ $\xrightarrow{CH_3N_4}$

التمرين الثالث:

<u>//I</u>

1/ إذا ارتفعت درجة الحرارة الماء داخل مسعر حراري نعتبر التحول ناشر للحرارة

 ΔH قيمة $\Delta \Delta$ تكون سالبة

 C_2H_2 من الاستلین 2g من الخرارة الناتجة عن احتراق

$$\sum Qi = 0$$
 النظام معزول وعند التوازن لدينا

 $\mathbf{Q} + \mathbf{Q}' = \mathbf{0}$ عند تحقيق نظام معزول لا يبادل مع الوسط الخارجي طاقة يكون $\mathbf{Q} + \mathbf{Q}' = \mathbf{0}$

🦞 'Q = كمية الحرارة المبادلة التي امتصها المسعر الحراري و محتواه

$${f Q}^{\prime}=$$
 (${f C}_{cal}+$ ${f m}_{sol}$ ${f c}_{sol}$) (${f T}_f-{f T}_i$) ${f Q}=$ كمية الحرارة التي نشرها التفاعل ${f Q}=$ - ${f Q}^{\prime}$

$$\rho \ = m \ / v \qquad \iff \qquad m = \rho \ * \ v$$

$$m = 1* (500) = 500g$$

$$Q' = (500* 4.185)(47.5)$$

$$Q' = 99393.75 j$$

$$Q = -Q' = -99393.75 j$$

. C_2H_2 - Laci | La

$$\Delta H = Q_P = Q / n$$

$$n = m/M = 2/26 = 0.076923 \text{ mol}$$

$$\Delta H = Q / n = -99393.75 / 0.076923$$

$$\Delta H = -1292120 \text{j/mol} = -1292.12 \text{ kj/mol}$$

 C_2H_2 لغاز الأسيتلين C_{C2H2} لعاز الأسيتلين / 5

$$Q = m_{C2H2} c_{C2H2} (T_f - T_i)$$

$$\mathbf{c}_{\text{C2H2}} = \mathbf{Q} / (\mathbf{m}_{\text{C2H2}} \cdot \Delta \mathbf{T}) = 99393.75 / (2*47.5)$$

$$c_{C2H2} = 1046.25 \text{ j/g.c}^{\circ}$$

/<u>/II</u>

$$C_2 H_{^2(g)} + \frac{5}{2} O_{_2(g)} \to 2 \ CO_{_2(g)} + \ H_{_2} O_{_{(\ell)}}$$

/<u>1</u> /<u>2</u>

$$\Delta H = \sum \Delta H_{\epsilon}^{0}(produits) - \sum \Delta H_{\epsilon}^{0}(reactifs)$$

$$\Delta H_{r}^{=} \left[2\Delta H_{f}^{0}(CO_{2(g)}) + \Delta H_{f}^{0}(H_{2}O_{(l)}) \right] - \left[\Delta H_{f}^{0}(C_{2}H_{2(g)}) + \frac{5}{2}\Delta H_{f}^{0}(O_{2(g)}) \right]$$

$$\Delta H_r = -286 + 2(-393) - 227 - \frac{5}{2}(0)$$

$$\Delta H_{r} = -1300 \text{ kJ.mol}^{-1}$$

$$\Delta H = \Delta U + \Delta nRT$$

$$\Delta n = 2 - \frac{5}{2} - 1 = -\frac{3}{2} \text{ mol}$$

$$T = 25 + 273 = 298K$$

$$\Delta U = \Delta H - \Delta nRT$$

$$\Delta U = -1300 \times 10^3 - (-1,5 \times 8,314 \times 298)$$

$$\Delta U = -1300 \times 10^3 + 3716.358 = -1296283.64 \text{ J.mol}^{-1}$$

 $\Delta U = -1296.283 \text{ kJ.mol}^{-1}$

 $\Delta H_T = -1298.9178 \text{ kJ.mol}^{-1}$

<u>/4</u>

$$C_p - C_v = R$$
 $C_p = C_v + R$

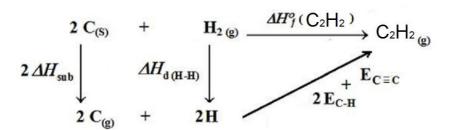
المركب	CO ₂ (g)	H2O (l)	$O_2(g)$	$\left(C_2H_2\right)_{(g)}$
C _p J/K.mol	37.2	75.2	30	43.68

$$\Delta H_{T} = \Delta H_{T_{0}} + \int_{T_{0}}^{T} \Delta C_{p} dT$$

$$\Delta C_{p} = \sum C_{p} (\text{Pr oduits}) - \sum C_{p} (\text{Re actifs})$$

$$\Delta C_{p} = 2C_{p} (\text{CO}_{2(g)}) + C_{p} (\text{H}_{2}\text{O}_{(l)}) - \left[C_{p} (\text{C}_{2}\text{H}_{2(g)}) + \frac{5}{2} C_{p} (\text{O}_{2(g)}) \right]$$

$$\Delta C_{p} = 2(37.2) + 75.2 - (43.68) - \frac{5}{2} (30)$$


$$\Delta C_{p} = 30.92 \text{ J/K.mol}$$

$$\Delta H_{T} = \Delta H_{T_{0}} + \Delta C_{p} \Delta T$$

$$\Delta H_{T} = -1300 \times 10^{3} + 30.92 \times 35$$

$$\Delta H_{T} = -1298917.8 \text{ J.mol}^{-1}$$

/5

$$\begin{split} \Delta H_f^0(C_2H_2_{\text{(g)}}) &= 2\Delta H_{\text{sub}}^0(C_{(\text{s})}) + \ \Delta H_{\text{dis}}^0(H-H) + \ 2E_{\text{C-H}} + E_{\text{C}\equiv\text{C}} \\ +277 &= \ 2(715) + \ (436) + 2(-415.46) + E_{\text{C}\equiv\text{C}} \\ E_{\text{C}\equiv\text{C}} &= +227 - \ 2(715) - (436) + \ 2(\ 415.46) \\ E_{\text{C}\equiv\text{C}} &= -808 \quad \text{kJ.mol}^{-1} \end{split}$$

$$\Delta H = \sum \Delta H_f^0(\text{produits}) - \sum \Delta H_f^0(\text{reactifs})$$

$$\Delta H_2 = \left[\Delta H_f^0(\text{CH}_3\text{COOH})_{(I)} \right] - \left[\Delta H_f^0(\text{CH}_3\text{-CHO})_{(I)} + \frac{1}{2}\Delta H_f^0(\text{O}_{2(g)}) \right]$$

$$-70 = -116 - \left[\Delta H_f^0(\text{CH}_3\text{-CHO})_{(I)} + \frac{1}{2}(0) \right]$$

$$\Delta H_f^0(\text{CH}_3\text{-CHO})_{(I)} = 70\text{-}116$$

$$\begin{split} \Delta H &= \sum \Delta H_f^0 (\text{produits}) - \sum \Delta H_f^0 (\text{reactifs}) \\ \Delta H &= \left[\begin{array}{cc} \Delta H_f^0 (\text{CH}_3\text{-CHO})_{(l)} \end{array} \right] - \left[\begin{array}{cc} \Delta H_f^0 (\text{C}_2 \text{H}_2_{(g)}) & + & \Delta H_f^0 (\text{H}_2\text{O}_{(l)}) \end{array} \right] \\ \Delta H &= -46 - 55 + 68 \\ \Delta H &= -33 \text{ kcal/mol} \end{split}$$

.CH3-CHO(l) الذي يرافق الحصول على (ΔU الداخلية ΔU الذي يرافق الحصول على (ΔU

$$\Delta H = \Delta U + \Delta nRT$$
 $\Delta n = -1 mol$
 $T = 25 + 273 = 298K$
 $\Delta U = \Delta H - \Delta nRT$
 $\Delta U = -46 \times 10^3 - (-1 \times 2 \times 298)$
 $\Delta U = -46.596 \text{ cal/mol}$
 $\Delta U = -46.596 \text{ kcal/mol}$

 $\Delta H_f^0(CH_3-CHO)_{(1)} = -46 \text{ kcal/mol}$

يتمدد 1 مول من غاز مثالي عكسيا من الضغط Pi=10 atm إلى الضغط النهائي $P_f=0.5$ عند درجة حرارة T=0.5 البتة T=0.5

1- حساب العمل المبذول من طرف الغاز المثالي.

$$dW = -PdV$$

$$PV = nRT \Rightarrow P = \frac{nRT}{V}$$

$$W = \int_{V_1}^{V_2} -nRT \frac{dV}{V} = -nRT \int_{V_1}^{V_2} \frac{dV}{V}$$

$$W = -nRT \ln \frac{P_1}{P_2}$$

$$W = -1 \times 8,314 \times 273 \ln \frac{10*1.013}{0.5*1.013} \frac{10^5}{10^5}$$

$$W = -6799.47 \text{ J} = -6.7994 \text{ KJ}$$

 ΔH و ΔH للغاز المثالى.

$$\Delta U$$
=0 عند در جة حر ارة ثابتة يكون ΔH =0

2- كمية الحرارة المتبادلة بين الوسط الخارجي والغاز المثالي.

$$\Delta U = Q + W$$
 لاينا $W + Q = 0 \Rightarrow Q = -W = 6.7994 \text{ KJ}$

<u>/ V</u>

 T_{eq} عساب درجة حرارة التوازن T_{eq} ؟

تصحيح الموضوع الثانى:

التمرين الأول:

$$CH_{3}\text{-}CH_{2}\text{OH} \xrightarrow{300 \text{ °C}} CH_{3}\text{-}CHO + H_{2}$$

$$CH_{3}\text{-}CH_{2}\text{OH} \xrightarrow{\text{acid}} CH_{2}\text{=}CH_{2} + H_{2}\text{O}$$

$$CH_{2}\text{=}CH_{2} + HBr \xrightarrow{\text{AICl}_{3}} CH_{3}\text{-}CH_{2}\text{-}CH_{3}$$

$$+ CH_{3}\text{CH}_{2}\text{Br} \xrightarrow{\text{AICl}_{3}} + HBr \xrightarrow{\text{COOH}} + CO_{2} + H_{2}\text{O}$$

$$CH_{2}\text{-}CH_{3} \text{ KMnO}_{4}, H_{2}\text{-}SO_{4} \xrightarrow{\text{COOH}} + CO_{2} + H_{2}\text{O}$$

$$COOCH_{2}\text{-}CH_{3} + H_{2}\text{O}$$

أ) التفاعل هو تفاعل أسترة, وهو تفاعل بطي محدود, لاحراري.

ب) مردود التفاعل هو 65% لأننا استعملنا كحول أولي.

- 3

اسم البوليمير :بولي إبثيلين .

 $n \left(H_2C = CH_2 \right) \longrightarrow \left(CH_2 - CH_2 \right)_n$

ب) مقطع بثلاثة وحدات من البوليمير:

......CH2-CH2-CH2-CH2-CH2-CH2-.....

استعمالات البوليمير: التغليف العوازل - لعبالخ.

 $n = M_P / M_m \rightarrow M_P = n M_m = 2500 * 28 \text{ g/mol} = 70000 \text{g/mol}.$ (5

4/ المعادلات التي تسمح بالحصول على حمض الفتاليك

التمرين الثاني:

التمرين الثاني: (05.5 نقاط)

<u> / ل</u>ديك ثلاثي الغليسيريد الآتي:

$$\begin{array}{c} \mathbf{O} \\ \mathbf{CH_{2-O-C-(CH_{2})_{7}\text{-}CH=CH-(CH_{2})_{7}\text{-}CH_{3}} \\ \mathbf{O} \\ \mathbf{CH_{-O-C-(CH_{2})_{7}\text{-}CH=CH-(CH_{2})_{7}\text{-}CH_{3}} \\ \mathbf{O} \\ \mathbf{CH_{2-O-C-(CH_{2})_{14}\text{-}CH_{3}} \end{array}$$

- 1) ثلاثي الغليسيريد غير متجانس لاحتوائه على أحماض ذهنية مختلفة.
- استنتاج صيغة الأحماض الذهنية والغليسيرول الموجودة في ثلاثي الغليسيريد

CH₃-(CH₂)₇-CH=CH-(CH₂)₇-COOH Numérotation des carbones 1 pour COOH, 18 pour CH₃.

حمض الأولييك oléique حمض الأولييك

حمض زيت النخيل a-palmitique حمض زيت النخيل

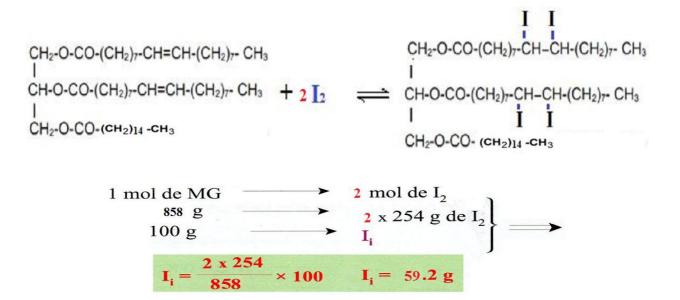
الغليسيرول

(3) كتابة معادلة التصبن بـ KOH

$$\begin{array}{c} \mathsf{CH_2} - \mathsf{O} - \mathsf{C} - (\mathsf{CH_2})_7 - \mathsf{CH} = \mathsf{CH} - (\mathsf{CH_2})_7 - \mathsf{CH}_3 \\ \mathsf{O} \\ \mathsf{CH} - \mathsf{O} - \mathsf{C} - (\mathsf{CH_2})_7 - \mathsf{CH} = \mathsf{CH} - (\mathsf{CH_2})_7 - \mathsf{CH}_3 \\ \mathsf{O} \\ \mathsf{CH_2} - \mathsf{O} - \mathsf{C} - (\mathsf{CH_2})_1 - \mathsf{CH}_3 \\ \mathsf{CH_2} - \mathsf{O} - \mathsf{C} - (\mathsf{CH_2})_{14} - \mathsf{CH}_3 \\ \end{array} \right) \\ + \\ \mathsf{CH_3} - (\mathsf{CH_2})_{14} - \mathsf{COOK} \\ \\ \mathsf{CH_2} - \mathsf{OOK} \\ \end{array} \right)$$

🖘 حساب دليل التصبن النظري لثلاثي الغليسيريد.

الكتلة المولية ثلاثي الغليسيريد = (2مول من الأولييك + 1مول من البالمتيك + الغليسيرول) <math>= 3 مول ماء


 $M_{Oleique}: C_{18}H_{34}O_2 = 282 \text{ g/mol}$

M _{Palmetique}: $C_{16}H_{32}O_2 = 256$ g/mol

M _{Glycerol}: $C_3H_8O_3 = 92$ g/mol

الكتلة المولية ثلاثي الغليسيريد = (2*282+256+282) الكتلة المولية ثلاثي الغليسيريد = (2*282+256+282)

4) حساب دليل اليود النظري لثلاثي الغليسيريد.

5) كتابة معادلة تفاعل اماهة ثلاثي الغليسيريد .

$$\begin{array}{c} CH_{2}-O-C-(CH_{2})_{7}-CH=CH-(CH_{2})_{7}-CH_{3} \\ CH_{2}-O-C-(CH_{2})_{7}-CH=CH-(CH_{2})_{7}-CH_{3} \\ CH_{2}-O-C-(CH_{2})_{1}-CH_{3} \\ CH_{2}-O-C-(CH_{2})_{14}-CH_{3} \\ \end{array} \begin{array}{c} 2CH_{3}-(CH_{2})_{7}-CH=CH-(CH_{2})_{7}-COOH \\ + CH_{3}-(CH_{2})_{14}-COOH \\ CH_{2}-O-C-(CH_{2})_{14}-CH_{3} \\ \end{array} \begin{array}{c} CH_{2}OH \\ CH_{2}OH \\ \end{array}$$

<u>/II</u>

$$Is = \frac{M_{\text{ NaOH}} * C_{\text{ NaOH}} * V}{m} = \frac{40 \times 0.5 \times 0.0164}{2.1 \text{ g}}$$

Is = 0.156190 g = 156.19 mg

1 mol de A \longrightarrow 1 mol de NaOH

M \longrightarrow 40g

1 g \longrightarrow Is

M = 256 g/mol

$$C_n H_{2n} O_2 = 256$$

 $n = 16$

CH₃ - (CH₂)₁₄ - COOH

ب - استنتج صيغة ثلاثي الغليسيريد

$$\begin{array}{c|c} \text{CH}_2 - \text{O} - \text{C} & \text{O} \\ \text{(CH}_2)_{14} - \text{CH}_3 \\ \text{O} \\ \text{CH} - \text{O} - \text{C} & \text{(CH}_2)_{14} - \text{CH}_3 \\ \text{O} \\ \text{CH}_2 - \text{O} - \text{C} & \text{(CH}_2)_{14} - \text{CH}_3 \end{array}$$

<u>/III</u>

1- السرين Ser حمض أميني سلسلته الجانبية CH₂-OH الترين الكتب صيغة L السرين هي:

ب- نعم السيرين فعال ضوئيا (لأنه يحتوي على كربون لا تناظري)

ج- السرين مركب أمفوتيري لأنه يتصرف كحمض يمكنه فقدان بروتون وأساس يمكنه اكتساب بروتون

د- كتابة الأشكال الشاردة الثلاثة:

$$pHi = \frac{pK_{aCOOH}}{2} + \frac{pK_{aNH2}}{2}$$

ہ۔ حساب قیمة ال pHi للسرین pHi للسرین
$$pHi$$
 قیمتی $pHi=2.21=pK_{aCOOH}$ و $pHi=2.21=pK_{aCOOH}$ $pHi=2.21=5,68$

/ اكمال التفاعلات /

2 HOOC — CH - CH₂-SH
$$\longrightarrow$$
 HOOC — CH - CH₂-S — S-CH₂ · CH — COOH + 2H⁺
 $\stackrel{\downarrow}{NH_2}$ HS-CH₂ · CH — COOH + NH₂ · CH₂ — COOH \longrightarrow HS-CH₂ · CH — CONH · CH₂ — COOH + H₂O

 $\stackrel{\downarrow}{NH_2}$ HS-CH₂ · CH — COOH \longrightarrow $\stackrel{\downarrow}{NH_2}$ + CO₂
 $\stackrel{\downarrow}{NH_2}$ CH₂ - CH — COOH + CH₃ — OH $\stackrel{H^+}{\longrightarrow}$ $\stackrel{\downarrow}{NH_2}$ CH₂ - CH — COOCH₃ + H₂O

 $\stackrel{\downarrow}{NH_2}$ OH

 $\stackrel{\downarrow}{NH_2}$ OH

<u>التمرين الثالث:</u>

1/ كتابة معادلة تفاعل الذوبان الحادث.

$$KOH(aq)$$
 $\xrightarrow{H_2O}$ $K^+_{(aq)}$ $+$ $OH^-_{(aq)}$ $\Delta H^\circ =$ $\rho_{H2O} = 1g/cm^3$ المستعملة الماء المستعملة $\rho_{H2O} = m/v$. $m = \rho * v = 1 * 100 = 100g$

3/ حساب كمية الحرارة الممتصة من طرف الماء.

 $\mathbf{Q} + \mathbf{Q'} = \mathbf{0}$ عند تحقيق نظام معزول لا يبادل مع الوسط الخارجي طاقة يكون $\mathbf{Q} = \mathbf{Q} + \mathbf{Q}$

🖑 🤘 = كمية الحرارة المبادلة التي امتصها المسعر الحراري و محتواه

$$Q' = (C_{cal} + m_{sol} c_{sol}) (T_f - T_i)$$

$$Q' = (200.46 + 100 * 4.185) (46-20)$$

$$Q = 16092.96 j = 16.096 kj$$

4 / حساب كمية الحرارة الناتجة من تفاعل الذوبان.

🥠 🔾 = كمية الحرارة التي نشرها تفاعل الذوبان

$$Q = -Q' = -16.096 \text{ kj}$$

5/ استنتاج الأنطالبي المولى لتفاعل الذوبان.

$$n = m / M = 11.2 / 56$$
 $\Leftrightarrow n = 0.2 \text{ mol}$
 $\Delta H = Q / n = -80.48 \text{ kj} / \text{mol}$

6/ حساب السعة الحرارية الكتلية لـ KOH.

$$Q = n \cdot C_{KOH} \cdot \Delta T \implies C_{KOH} = \frac{Q}{n \cdot \Delta T}$$

$$C_{KOH} = \frac{16.096}{0.2 \cdot 26} \implies C_{KOH} = 3.095 \text{ kj/mol.k}$$

التمرين الرابع:

$$25^{\circ}$$
C كند ΔH_{1} للتفاعل السابق عند ΔH_{2} حساب انطالبي ΔH_{2} + SO $_{2}$ \rightarrow 3S + 2H $_{2}$ O ΔH_{1} (g) (g) (g) (s) (g) $\Delta H_{1} = 2\Delta H_{f(H_{2}O)g} - \Delta H_{f(SO_{2})g} - 2\Delta H_{f(H_{2}S)g}$

$$\Delta H_{1} = 2\Delta H_{f(H_{2}O)g} - \Delta H_{f(SO_{2})g} - 2\Delta H_{f(H_{2}S)g}$$

$$\Delta H_{2} = \Delta H_{f(H_{2}O)l} + \Delta H_{f(SO_{2})g} - \Delta H_{f(H_{2}S)g}$$

$$\Delta H_{vor(H_{2}O)} = \Delta H_{f(H_{2}O)g} - \Delta H_{f(H_{2}O)l}$$

$$\begin{split} -\Delta H_1 &= -2\Delta H_{f(H_2O)g} + \Delta H_{f(SO_2)g} + 2\Delta H_{f(H_2S)g} \\ 2\Delta H_2 &= 2\Delta H_{f(H_2O)l} + 2\Delta H_{f(SO_2)g} - 2\Delta H_{f(H_2S)g} \\ 2\Delta H_{vap(H_2O)} &= 2\Delta H_{f(H_2O)g} - 2\Delta H_{f(H_2O)l} \\ -\Delta H_1 + 2\Delta H_2 + 2\Delta H_{vap(H_2O)} &= 3\Delta H_{f(SO_2)g} \\ \Delta H_1 &= 2\Delta H_2 + 2\Delta H_{vap(H_2O)} - 3\Delta H_{f(SO_2)g} \\ \Delta H_1 &= 2\times (-562.2) + 2\times 44 - 3\times (-299) = -139.4kJ / mol \end{split}$$

$$\Delta H_{2} = 2\Delta H_{d(H-S)} + \frac{3}{2}\Delta H_{d(O=O)} - 2\Delta H_{d(S=O)} - 2\Delta H_{d(O-H)} - \Delta H_{vap(H_{2}O)}$$

$$2\Delta H_{d(H-S)} = \Delta H_{2} - \frac{3}{2}\Delta H_{d(O=O)} + 2\Delta H_{d(S=O)} + 2\Delta H_{d(O-H)} + \Delta H_{vap(H_{2}O)}$$

$$\Delta H_{d(H-S)} = \frac{\Delta H_{2} - \frac{3}{2}\Delta H_{d(O=O)} + 2\Delta H_{d(S=O)} + 2\Delta H_{d(O-H)} + \Delta H_{vap(H_{2}O)}}{2}$$

$$\Delta H_{d(H-S)} = \frac{-562.2 - \frac{3}{2}(498) + 2(539) + 2(463) + 44}{2} = 369.4kJ / mol$$

دساب الفرق ΔU_1 - ΔU_1 للتفاعل الأول.

$$\Delta H = \Delta U + \Delta nRT$$
 $\Delta H - \Delta U = \Delta nRT$
 $\Delta n = -1 \text{ mol}$
 $T = 25 + 273 = 298K$
 $\Delta U = \Delta H - \Delta nRT$
 $\Delta H - \Delta U = (-1 \times 8.314 \times 298)$
 $\Delta H - \Delta U = -2477.57 \text{ j/mol}$

 ΔH_{333} - ΔH_{298} الثاني. 4

$$\begin{split} \Delta H_T &= \Delta H_{T_0} + \int_{T_0}^T \Delta C_p dT \\ \Delta C_p &= \sum C_p \left(\text{Pr oduits} \right) - \sum C_p \left(\text{Re actifs} \right) \\ \Delta C_p &= C_p \left(\text{SO}_{2,(9)} \right) + C_p \left(\text{H}_2 \text{O}_{(1)} \right) - \left[C_p \left(\text{H}_2 \text{S}_{-(9)} \right) + \frac{3}{2} \ C_p \left(\text{O}_{2,(9)} \right) \right] \\ \Delta C_p &= \left(42 \right) + 75.2 - \left(34.6 \right) - \frac{3}{2} \left(29.4 \right) \\ \Delta C_p &= 38.5 \ \text{J/K.mol} \\ \Delta H_T - \Delta H_{T_0} &= \Delta C_p \ \Delta T \\ \Delta H_T - \Delta H_{T_0} &= 38.5 \ \left(333 - 298 \right) \\ \Delta H_T - \Delta H_T &= 1347.5 \ \text{j/mol} \end{split}$$

$$\begin{array}{ll} 02 \text{ Lieball} & \text{Lieball} & \text{Lieb$$

II- لديك معادلات التفاعل التالية:

$$4NO_{(g)}$$
 \longrightarrow $2N_{2(g)} + 2O_{2(g)}$ -2 $\Delta H_{r1} = 181 KJ$ $N_{2(g)} + 2O_{2(g)}$ $\Delta H_{r2} = 67,8 KJ$ $\Delta H_{r3} = 30.2 KJ$ $\Delta H_{r3} = -2 \Delta H_{r1} + \Delta H_{r2} + \Delta H_{r3}$ $\Delta H_{r} = -2 \Delta H_{r1} + \Delta H_{r2} + \Delta H_{r3}$ $\Delta H_{r} = -2*181 + 67.8 + 30.2 = -264 \ kj$ $\Delta H_{f}(N_{2}O_{5(g)}) = NO_{2(g)}$ $NO_{2(g)}$ $NO_{$

 $100~{\rm C}^{\circ}$ نأخذ 1 مول من غاز الآزوت N_2 (نعتبره غازا مثاليا) حيث نقوم برفع درجة حرارة الغاز من N_2 إلى N_2 أحسب كل من كمية الحرارة N_2 التي يكتسبها النظام و التغير في الأنطالبي وذلك في الحالتين

 $\Delta H_f(NO_{(g)}) = 181/2 = 90.5 \text{ kj/mol}$

1 / حالة تحول ثابث الحجم Isochore .

$$C_p - C_V = R \implies C_V = C_P - R$$
 $C_V = (33-8,31) = 24,69 \text{ J.mol}^{-1} \text{ K}^{-1}$
 $Q_V = \Delta U = n C_V \Delta T$
 $Q_V = 1975,2 \text{ J}$

2 / حالة تحول ثابث الضغط Isobare

$$Q_p = \Delta H = n C_p \Delta T$$

$$Q_p = 2640 \text{ J}$$

