الفوج: 3 ر	الفرض الأول في مادة العلوم الفيزيائيث	ثانوية فاطمة الزهراء * نبست
المدة: 80 د		الأستاذ دبيلي سمير

التمرين الأول :

 $2H_3O_{(aq)}^+ + H_2O_{2(aq)} + 2I_{(aq)}^- = I_{2(aq)} + 4H_2O_{(l)}$: نتابع زمنيا النحول البطيء و النام المنمذج بالتفاعل ذي المعادلة :

: عند اللحظة t=0 نشكل عند $25^{\circ}C$ في بيشر المزيج المتكون من

. $C_1=4.5 imes10^{-2}mol$ / L من محلول مائي للماء الأوكسيجيني $H_2O_{2(aq)}$ تركيزه المولي $V_1=100ml$

. $C_2 = 6.0 imes 10^{-2} mol \ / \ L$ من محلول مائي ليود البوتاسيوم ($K^+_{(aq)} + I^-_{(aq)}$) تركيزه المولي $V_2 = 100 ml imes V_2$

×بضع قطرات من محلول مركز لحمض الكبريت (بزيادة).

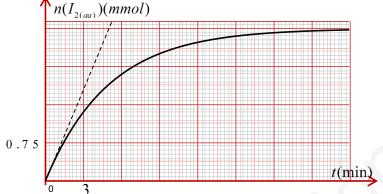
1- أ- أحسب كميات المادة الإبتدائية للمتفاعلات .

ب- أنجز جدول تقدم التفاعل .

. x_{\max} متفاعل محد و استنتج قيمة التقدم الأعظمي . X_{\max}

. $n_f(I_{2(aq)})$ د- حدد كمية المادة النهائية لثنائي اليود المتشكل

2- لمعايرة ثنائي اليود المتشكل في كل لحظة t نسحب الحجم * من المزيج التفاعلي و نسكبه في إير لنماير وضع مباشرة في حوض من الماء المتجمد ثم نعايره بمحلول لثيوكبريتات الصوديزم تركيزه معلوم. لنتمكن من


الحصول على المنحنى $f(t)=n(I_{2(aa)})=n(I_{2(aa)})$

أ- لماذا تم وضع الإيرلنماير في الماء المتجمد .

ب- عرف السرعة الحجمية لتشكل ثنائي اليود واحسب عند اللحظتين $t=9\,\mathrm{min}$.

ج – قارن بين السرعتين وماذا تستنتج؟ عين العامل الحركي المسؤول عن ذلك.

د- إقترح عاملين حركيين يمكننا من زيادة السرعة الابتدائية اللتفاعل.

التمرين الثاني :

يتم معالجة أحد أمراض الدم والمتمثل في التكاثر غير الطبيعي للكريات الحمراء من خلال حقن المريض بمحلول يحتوي على الفوسفور $^{32}_{15}$ المشع الذي يلتصق بالكريات الحمراء الفائضة في الدم ليدمر ها بالإشعاع الصادر عنه. يعطى ثابت النشاط الإشعاعي للفوسفور 32 15

 $\lambda = 4.48 \times 10^{-2} J^{-1}$

. اعتمادا على المخطط (Z,N) المقابل 1

أ- حدد رمز النواة ${}^{A}_{Z}\!Y$ المشار إليها في المخطط .

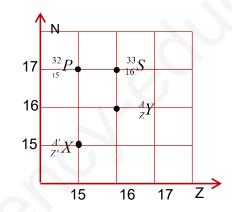
ب- أكتب معادلة تفكك الفوسفور 32 إذا كان ينتج النواة ${}^{A}\!Y$ محددا الإشعاع الصادر.

2- أ- أكتب قانون التناقص الإشعاعي .

ب- عرف النشاط الإشعاعي لعينة مشعة .

ج- بين أن النشاط الإشعاعي A(t) يتناسب طردا مع عدد الأنوية المشعة N(t) في تلك الله حنا N(t)

. N(t) وجد المعادلة التفاضلية لعدد الأنوية المشعة


3-تم حقن مريض عند اللحظة t=0 بجرعة من دواء نشاطها الإشعاعي الناتج عن الفوسفور

. $A_0 = 4.2 \times 10^{15} bq$ يقدر بـ 32

أ- أحسب كتلة العينة الابتدائية m_0 للفوسفور 32.

ب- ينعدم مفعول هذا الدواء عند يصبح النشاط الإشعاعي للعينة يساوي 1% من نشاطه الإبتدائي.

حدد بوحدة jour المدة اللازمة لانعدام مفعول هذا الدواء.

