الجمهورية الجزائرية الديمقراطية الشعبية

السنة الدراسية: 2022/2021

فرض في مادة : العلوم الفيزيائية ثانوية : باية الخاصة - بليدة -

ري. السنة: الثالثة ثانوي وزارة التربية الوطنية

الشعبة: علوم تجريبية

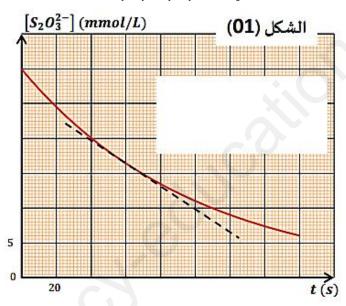
تقتی ریاضی ، ریاضیات

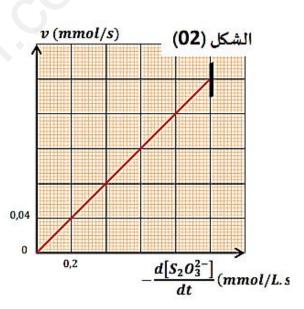
المدة: 02 سا و 30 د

على المترشح أن يختار أحد الموضوعين الآتيين: الموضوع الأول الموضوع الأول على 02 صفحات (من الصفحة 1 من 4 إلى الصفحة 2 من 4)

التمرين الأول:

نريد در اسة حركية التحول الكيميائي التام بين شوار د ثيوكبريتات $S_2O_3^{2-}{}_{(aq)}$ مع شوار د الأكسونيوم $H_3O^+{}_{(aq)}$ الذي ننمذجه بمعادلة التفاعل : $S_2O_3^{2-}{}_{(aq)} + 2H_3O^+{}_{(aq)} = S_{(s)} + SO_{2}{}_{(g)} + 3H_2O_{(l)}$: التفاعل :


في اللحظة t=0 من أجل درجة حرارة 25° C نمزج حجما $V_1=100~ml$ من محلول ثيوكبريتات الصوديوم t=0 من أجل درجة حرارة $V_1=100~ml$ نمزج حجما $V_2=0$ 0. $C_2=0$ 0,12 mol/l من محلول حمض كلور الماء $V_1=0$ 0 من محلول حمض كلور الماء $V_2=0$ 1 من محلول حمض كلور الماء والماء مع حجم $V_1=0$ 1 من محلول حمض كلور الماء والماء مع حجم عرب مع عرب مع عرب مع عرب مع عرب مع عرب عرب مع عرب م


1- هل يمكن متابعة هذا التفاعل عن طريق قياس الناقلية ؟ علل ؟

2- عرف التفاعل التام ؟ و هل التحول المدروس سريع أم بطيء ؟ علل .

3- أنشئ جدول تقدم التفاعل .

المتابعة الزمنية لهذا التحول الكيميائي مكنتنا من رسم المنحنيين البيانيين الموضحين في الشكل (01) و (02).

t غلى جدول التقدم التفاعل أثبت أنه من أجل كل لحظة t

$$[H_3O^+] = a + b.[S_2O_3^{2-}]$$

. حيث a و d يطلب تعيين عبارتيهما

: عرف السرعة الحجمية لإختفاء $S_2 O_3^{2-}$, ثم تأكد أن علاقتها مع سرعة التفاعل تكتب بالعلاقة $S_2 O_3^{2-}$

$$V_{vol}(S_2O_3^{2-}) = \frac{v}{V_1 + V_2}$$

. V_2 أوجد قيمة الحجم العلاقة الرياضية لبيان الشكل (02) أوجد قيمة الحجم -6

. $(2Na^+ + S_2O_3^{2-})_{aq}$ التركيز المولي C_1 لمحلول ثيوكبريتات الصوديوم التركيز المولي ب

7- هل المزيج الإبتدائي للمتفاعلات في شروط ستكيومترية ؟

 x_{max} . x_{max} . x_{max} . x_{max} .

9- أحسب قيمة سرعة التفاعل عند اللحظة $t=1\ min$ ثم استنتج قيمة سرعة اختفاء شوارد الأكسونيوم .

9 حدد أهمية زمن نصف التفاعل $t_{\frac{1}{2}}$ و عين قيمته بيانيا $t_{\frac{1}{2}}$

التمرين الثاني:

: من جزئين m=200 من جزئين يتكون مسار جسم متحرك (S) كتلته

جزء يمثل خط الميل الأعظم لمستو مائل بزاوية $\alpha=45^{\circ}$ عن المستوي الأفقي , وهو عبارة عن وسادة هوائية , يمكن أن نلغي الإحتكاك على المستوى المائل بتشغيل مضخة الوسادة الهوائية .

نهمل تأثير الهواء في كل التمرين و نجري التجربتين:

الحركة على المستوي المائل OB:

التجربة الأولى:

نشغل المضخة و ندفع الجسم من النقطة (O) بسر عة $\overline{v_0}$ موازية لخط الميل الأعظم .

بواسطة تجهيز مناسب يمكن تحديد فواصل الجسم (S) على المحور Ox فوق المستوي المائل في اللحظات الزمنية الموافقة .

التجربة الثانية:

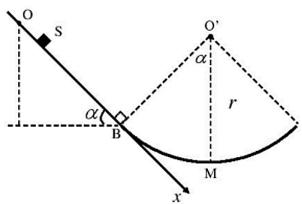
نقوم بنفس التجربة السابقة, لكن بدون تشغيل المضخة نعتبر الإحتكاك على المستوي المائل قوة ثابتة شدتها f.

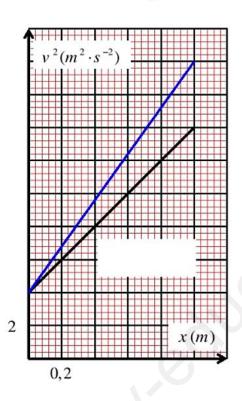
نمثل بيانيا مربع سرعة الجسم (v^2) بدلالة الفاصلة χ في كل تجربة :

1- بتطبيق القانون الثاني لنيوتن في معلم سطحي أرضي , جد العبارة الحرفية لطويلة تسارع (S) و أكتب العلاقة التي تربط بين v^2 و χ في كل تجربة .

2- أنسب كل بيان للتجربة الموافقة مع التعليل.

f أحسب شدة قوة الإحتكاك f


الحركة على المسار الدائري BM:

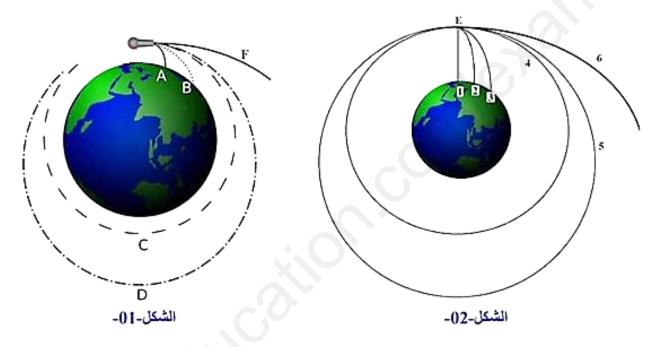

1- بتطبيق مبدأ انحفاظ الطاقة بين B و M, أحسب سرعة الجسم في النقطة (M) أسفل نقطة في المسار الدائري و ذلك في التجربة الأولى.

2- أحسب في التجربة الأولى شدة قوة تأثير الطريق على الجسم في (M).

معطبات:

 $g_0 = 9.8 \, m/s^2$: الجاذبية الأرضية

إنتهى الموضوع الأول


الموضوع الثاني الموضوع الثاني على 02 صفحات (من الصفحة 3 من 4 إلى الصفحة 4 من 4)

التمرين الأول:

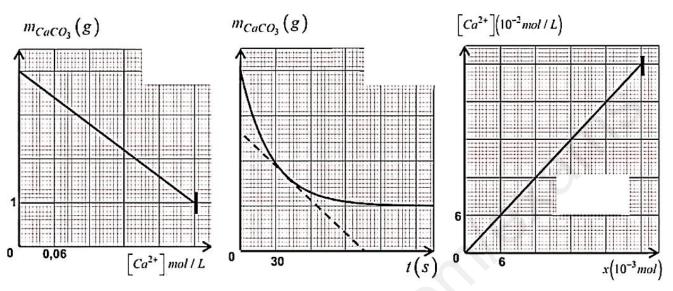
لفهم ظاهرة الحركة القمر و الأقمار الإصطناعية حول الأرض نقترح نموذج المدفع المداري الذي يمثل تجربة فكرية إقترحها العالم نيوتن لشرح دوران جسم حول جسم آخر – الشكل 01 – إذ أن السرعة الإبتدائية تلعب دور كبير في تحديد مسار حركة الجسم . بواسطة برمجية خاصة نجري محاكاة – الشكل 02 – لقذف جسم (S) كتلته $m_{\rm s}$ بسرعة إبتدائية v_0 من نفس النقطة T تقع على ارتفاع T من سطح الأرض بالنسبة لمعلم مركزي أرضي يتم قذف القذيفة بطريقة أفقية مع إعتبار أن القذيفة تخضع لقوة جذب الأرض فقط ندون النتائج في الجدول التالى :

$v_0 >>> V$	$v_0 \ll V$	$v_0 < V$	$v_0 > V$	$v_0 = V$	$v_0 = 0$	v_0 السرعة الإبتدائية
المسار 06	المسار 02	المسار 03	المسار 05	المسار 04	المسار 01	المسار

V تمثل السرعة المدارية لمركز عطالة الجسم (S) في مداره وفق المسار V

- 1- أكتب نص قانون الجذب العام لنيوتن, ثم أكتب عبارة قوة الجذب العام التي تطبقها الأرض على الجسم (S).
- (04 المسار (S) دائري نصف قطره $r=2R_T$ كما هو محدد بالشكل (S) دائري نصف قطره (S)
 - 2-1- مثل قوة جذب الأرض للجسم (S) .
 - 2-2- بين أن حركة مركز عطالة الجسم (S) دائرية منتظمة .
 - 2-3- أوجد العبارة الحرفية للسرعة المدارية V لمركز عطالة الجسم (S) في مداره , ثم أحسب قيمتها .
 - 4-2- هل السرعة المدارية تتعلق بكتلة الجسم $m_{\rm s}$ أم بالإرتفاع h ?
- 3- نقذف جسم آخر كتلته $m_1=2m_s$ بسرعة إبتدائية $v_0=V$ من نفس الإرتفاع $m_1=2m_s$ ما هو مسار حركة مركز عطالة الجسم S من بين المسارات المحددة في الشكل S مع التعليل ؟
 - 4- أذكر القانون الثاني لكبلر ، ثم اعتمادا على هذا القانون وبدون أي حساب ، بيّن أن سرعة هذه الأقمار الصناعية غير ثابتة .
 - . عرف الدور ثم أوجد عبارته بدلالة M_T , G ثم أحسب قيمته .
 - استنتج القانون الثالث لكبلر , ثم أحسب ثابت كبلر .
- 7- اعتمادا على نتائج هذا التمرين و معلوماتك السابقة حلل المسارات F , D , C , B , A الموضحة في الشكل -01 شم قدم تفسير المعدم سقوط الأقمار و الأقمار الإصطناعية ذات الحركة الدائرية المنتظمة حول الأرض .

معطيات:


 $M_T = 6 imes 10^{24} \ Kg$: كتلة الأرض $R_T = 6.4 imes 10^3 Km$ شعاع الأرض $G = 6.67 imes 10^{-11}$ ثابت الجذب العام

التمرين الثاني:

يحتوي الطباشير على نسبة P% من كربونات الكالسيوم

لدراسة التفاعل التام بين كربونات الكالسيوم $caco_3$ و محلول مائي (S) لحمض كلور الهيدروجين $(H_3O^+ + Cl^-)$ تركيزه الدراسة التفاعل التام بين كربونات الكالسيوم t=0 قطعة من مسحوق الطباشير t=0 في حجم t=0 من المحلول t=0 , نضع عند اللحظة t=0 قطعة من مسحوق الطباشير t=0 في حجم t=0 أنكتب معادلة التفاعل الحادث : t=0 الحددث : t=0 الحددث

 $m_{(CaCO_3)} = h([Ca^{2+}])$, $m_{(CaCO_3)} = g(t)$, $[Ca^{2+}] = f(x)$: الدراسة التجريبية مكنتنا من رسم المنحنيات البيانية

1- أنجز جدول تقدم التفاعل الحادث .

2- اعتمادا على جدول التقدم التفاعل و المنحنيات البيانية أوجد:

- قيمة التقدم الأعظمي Xmax .
- V التركيز المولي $[Ca^{2+}]_f$ ثم استنتج حجم المحلول V
- حدد المتفاعل المحد ، ثم جد التركيز المولي c_0 لمحلول كلور الهيدروجين .

: عبارة الكتلة $m_{(caco_3)}$ في لحظة t تكتب بالعلاقة $m_{(caco_3)}$

$$m_{(CaCO_3)} = m_0 - M.V.[Ca^{2+}]$$

حيث: M هي الكتلة المولية لكربونات الكالسيوم.

. أوجد الكتلة الإبتدائية m_0 لكربونات الكالسيوم و الكتلة النهائية m_f لكربونات الكالسيوم في نهاية التفاعل .

5- أحسب النسبة P% لكربونات الكالسيوم في قطعة الطباشير .

. $m_{(CaCO_3)}=g(t)$ جد سلما مناسبا لمحور التراتيب للمنحنى

: يكون $t=t_{\frac{1}{2}}$ يكون -7

$$m_{\frac{t_1}{2}(CaCO_3)} = \frac{m_{0(CaCO_3)} + m_{f(CaCO_3)}}{2}$$

. $t_{rac{1}{2}}$ قيمة -7

t=40~s أحسب السرعة التجمية للتفاعل في اللحظة -8

 $M(CaCO_3) = 100 \ g/mol$: معطیات

إنتهى الموضوع الثاني