

الأثنين 30 - أفريل- 2018

المادة : تكنولوجيا

المدة: 2 سا

ثانوية - الحمادية - بجاية القسم: (GP) الأستاذة: ن- أيت مزيان

الفرض (2) للثلاثي الثالث

التمرين الأول: (12 نقاط)

. Pt بوجود البلاتين H_2 فحم هيدروجين H_2 كتاته المولية H_2 كتاته المولية H_3 يثبت مولين من الهيدروجين H_2 بوجود البلاتين H_3

1 - ما طبيعة هذا المركب ؟ إستنتج صيغته الجزيئية العامة .

2 - أعط كل الصيغ نصف المفصلة الممكنة له .

II - نجرى انطلاقا من المركب A سلسلة التفاعلات التالية:

1- أوجد الصيغ نصف المفصلة للمركبات:

(I) \downarrow (H),(G),(F),(E),(D),(C),(B),(A)

-2 الشوارد Hg^{2+} الشوارد Hg^{2+} الشوارد

 H_2O و الماء HCO_3H و الماء 3

4- حضر المركب (G) إنطلاقا من 3-methylbut-1-éne موضحا الشروط التجريبية لحدوثه .

 5- ما نوع التماكب الذي يمتاز به المركب (G) ؟ برر و مثل متماكباته

6- ما نوع التفاعل الحادث في التفاعل 7 ؟ أذكر الوسيط المستعمل

7- ما أسم المركب (I) ؟ ما دوره في مجال الفلاحي الغذائي ؟

II) - بهدف تحضير المركب (I) في المخبر نستخدم المواد التالية:

1- أكتب معادلة التفاعل الحادث (بصفة عامة)

2- ما دور حمض كلور الماء في التجربة.

3- أحسب مردود التجرية R.

1) (A) + H, \xrightarrow{Pd} (B)

2) (B)
$$+$$
 O₃ \longrightarrow (C)

3) (C) +
$$H_2O \longrightarrow 2(D) + H_2O_2$$

5) (E) + Mg
$$\stackrel{\text{Ether}}{\longrightarrow}$$
 (F)

6) (F) + (D)
$$\xrightarrow{\text{H}_2\text{O}}$$
 (G) + MgCl(OH)

8) (H)
$$\frac{\text{KMnO}_4}{\text{H}_2\text{SO4}}$$
 (I) + ... +

- 2.5 ml من كحول بنزيلي	NaOH -
$C_6H_5 - CH_2 - OH$	(بالفائض) KMnO ₄ -
$(\rho = 1.04 \text{ g} / \text{cm}^3)$	- محلول HCl مركز

التمرين الثاني: (08 نقاط)

A + B → 2 C + D : لدينا التفاعل التالي :

[A] (mmol/L) | 1.0 | 1.58 | 2.51 | 3.98 | V(mmol/L.min) | 0.05 | 0.126 | 0.316 | 0.8 | 0.8 | (A)

0 = 16 g / mol

C = 12 g / mol

H = 1g/mol

 \mathbf{a} باعتبار \mathbf{a} هي رتبة التفاعل بالنسبة للمتفاعل \mathbf{b} ، \mathbf{A} هي رتبة التفاعل \mathbf{a} ، (\mathbf{a} الرتبة الأجمالية للتفاعل و اذا كان \mathbf{a} = \mathbf{b} و \mathbf{a} الأجمالية للتفاعل و اذا كان \mathbf{a} = \mathbf{a} = \mathbf{b} و الأجمالية للتفاعل و اذا كان \mathbf{a} = \mathbf{a}

1- أكتب قانون السرعة لهذا التفاعل بدلالة [A] ، n و k

 $t_{1/2}$ و استنتج زمن نصف التفاعل n و ثابت السرعة k و استنتج زمن نصف التفاعل -2

3- احسب السرعة اللحظية لإختفاء المتفاعل A عند اللحظة t=60~sec ، ثم استنتج السرعة اللحظية لتشكيل المركب C عند نفس اللحظة

 $[A] = 10 \; \text{mmol} \, / \, L$ الذي يكون عنده $t \; (\text{sec})$ الذي احسب الزمن

