الفرض الفصل الثالث

النمرين الأول

ليكن تفاعل احتراق حمض الايثانويك السائل عند درجة حرارة 25°C

$$CH_3COOH_{(\ell)} + 2O_{2(g)} - \longrightarrow 2CO_{2(g)} + 2H_2O_{(\ell)}$$

1- احسب انطالبي تفاعل الاحتراق علما ان:

 $\Delta H_f(CH_3COOH)_g = -436KJ/mol$

 $\Delta H_f(CO_2)_g = -393 \text{KJ/mol}$

الرابطة	Н-Н	O=O	О-Н	$\Delta H_{\text{vap}} H_2 O \text{ (KJ/mol)}$
$\Delta H_{dis}(KJ/mol)$	436	498	463	44

2- احسب التغيير في الطاقة الداخلية لتفاعل الاحتراق عند درجة حرارة C 25°C ماذا تستنتج؟

ΔH	$\Delta H_{\text{vap}} CH_3 COOH = 48 \text{KJ/mol} T_{\text{vap}} = 118^{\circ}$			m C احسب انطالبي تفاعل الاحتراق عند $ m C$ علما ان:				
	المركب	$CO_{2(g)}$	$H_2O_{(\ell)}$	$H_2O_{(g)}$	$O_{2(g)}$	CH ₃ COOH _(ℓ)	CH ₃ COOH _(g)	
	Cp(J/mol.K)	37.20	75.30	33.60	29.36	124.3	66.5	

النمرين الثاني

1- احسب انطالبي تفكك HNO₂ عند درجة حرارة

$$2HNO_{2(aq)} \longrightarrow H_2O_{(\ell)} + NO_{(g)} + NO_{2(g)}$$

علما ان:

$$HNO_{2(aq)} + \frac{1}{2}O_{2(g)} \longrightarrow HNO_{3(aq)}\Delta H_1 = -52.3KJ / mol$$

$$H_2O_{(\ell)} + \frac{1}{2}O_{2(g)} + 2NO_{2(g)} \longrightarrow 2HNO_{3(aq)}\Delta H_2 = -194.9KJ / mol$$

$$NO_{(g)} + \frac{1}{2}O_{2(g)} \longrightarrow NO_{2(g)}\Delta H_3 = -56.6KJ / mol$$

 ΔH - ΔU = -1239J R=8.314J/mol.K

2- عين درجة حرارة التفاعل (3) علما ان

3- احسب انطالبي التفاعل التالي:

$$2NH_{3(g)} + \frac{5}{2}O_{2(g)} \longrightarrow 2NO_{(g)} + 3H_2O_{(\ell)}$$

المركب	$NH_{3(g)}$	$NO_{2(g)}$	HNO _{3(aq)}
ΔH_f (KJ/mol)	-46	+33.18	-207.36

النمرين الثالث

لدر اسة الحركبة لتفكك الابثانول نسجل النتائج في الجدول التالي:

			ِي.	٠ ي ا	<u> </u>	* 7
t(min)	0	1	2	4	10	20
C(mol/L)	4	3.37	2.85	2.03	0.73	0.13

C=f(t) ارسم المنحنى البياني C=f(t)

[2-10] احسب السرعة المتوسطة لتفكك الايثانول في المجال الزمني [2-10]

3- احسب السرعة اللحظية عند اللحظة t=2min

4- علما ان ثابت السرعة $K=0.17min^{-1}$. استنتج رتبة التفاعل مع التعليل

5-. احسب زمن نصف التفاعل؟

 $V_{\rm f}$ اكتب قانون السرعة ثم احسب سرعة اللحظية $V_{\rm f}$ عند للحظة 15min .

3as.ency-education.com