الجمهورية الجزائرية الديمقراطية الشعبية

المقاطعة الأولى: المدية + الجزائر ش+ تندوف + تمنراست

وزارة التربية الوطنية

المقاطعة الرابعة: الجزائر وسط +الجزائر غ + تيبازة + اليزي

امتحان بكالوريا تجريبي التعليم الثانوي

دورة: ماى 2021

المدة: 04 سا و 30 د

الشعبة: تقنى رياضى

اختبار في مادة: التكنولوجيا (هندسة الطرائق)

على المترشح أن يختار أحد الموضوعين الآتيين الموضوع الاول

يحتوى الموضوع الأول على 04 صفحات من الصفحة 1 الى الصفحة 4

التمرين الأول: (7نقاط)

الماه في السين (A) في وجود وسيط، تتطلب 1,8g من الماء وينتج مركبا مستقرًا (B) صيغته العامة $C_nH_{2n}O$.

- 1) أكتب التفاعل الحادث واذكر الوسيط المستعمل.
- 2) جد الصيغة نصف المفصلة للألسين (A) وللمركب (B).
- 3) نجري على الألسين (A) سلسلة التفاعلات الكيميائية التالية:

$$1/ \qquad (A) + H_2 \xrightarrow{Pd} (C)$$

$$2/ \qquad (C) + \left\langle \sum \right\rangle \xrightarrow{H_2SO_4} (D)$$

$$(D) + HNO_3 \xrightarrow{?} (E)_{(Para)} + H_2O$$

$$4/$$
 (E) $\xrightarrow{\text{Fe}}$ (F) $+ 2\text{H}_2\text{O}$

$$(F) + Cl_2 \xrightarrow{UV} (G) + HCl$$

$$6/$$
 $(G) + Mg \xrightarrow{R-O-R} (H)$

7/ (H) +
$$CO_2 \xrightarrow{H_2O} (I) + MgCl(OH)$$

أ- جد الصيغ نصف المفصلة للمركبات: (C), (C), (E), (E),

جـ بلمرة المركب (I) تعطى البولمير P.

- أعط صيغة البوليمير P.
- n = 1442 علمًا أن درجة البلمرة n = 1442 المولية المتوسطة للبولمير

تعطى الكتل الذرية بالـ (g/mol): H:1 , O:16 , H:1 (g/mol)

د- يمكن الحصول على المركب (D) بتعويض المركب (C) بمركب آخر مع تغيير الوسيط.

- اكتب التفاعل الحادث.

4) اكتب ما يلى:

أ- التفاعلات التي تسمح بتحضير المركب (B) انطلاقًا من المركب (C) و كواشف كيميائية أخرى. (F) - تفاعل واحد يسمح بالحصول على المركب (F) انطلاقًا من المركب (F).

5) إليك سلسلة التفاعلات التالية:

$$\begin{array}{cccc} \left(F\right) & + & CH_{\overline{3}} & C \stackrel{\nearrow}{\sim} & C_{Cl} & \longrightarrow & \left(J\right) \\ \left(J\right) & & & & \frac{1/\text{LiAlH}_4}{2/\text{H}_2\text{O}} & \left(K\right) \end{array}$$

أ- ما هي الصيغ نصف المفصلة للمركبات: (J) و (K).

ب- ما طبيعة المركب (J)؟

التمرين الثانى: (6 نقاط)

الدهني (A) على (DG) على (DG) على (DG) على (DG) على الأكسيجين، ويتكون من الحمض الدهني (B).

- 1) جد الكتلة المولية لثنائي الغلسيريد (DG).
- 2) الحمض الدهني (A) له قرينة حموضة I_a=220.48.
 - أ- احسب الكتلة المولية للحمض الدهني (A).

. Cn : $1\Delta^9$ علمًا أن رمزه (A) علمًا بالدهني بالدهني بالمنتج الصيغة نصف مفصلة للحمض الدهني

3) يمكن لـ (DG) أن يتحلل مائيًا في وسط حمضي أو بفعل انزيم وفق التفاعل الكيميائي التالي:

$$(DG) + \dots H_2O \longrightarrow (A) + (B) + (C)$$

أ- وازن التفاعل السابق مبيدًا صيغة المركب (C).

 I_{i} =44,88 علمًا أن قرينة يوده (DG) علمًا أن قرينة يوده

جـ استنتج الصيغة نصف المفصلة للحمض الدهني (B).

د- اكتب الصيغة نصف المفصلة لـ (DG) حيث (A) في الموضع β .

(A) إذا علمت أن عينة من زيت نباتي تحتوي 80% من ثنائي الغليسريد (DG) و 10% من الحمض الدهني (B) و 10% من الحمض الدهني (B).

. أحسب قرينة تصبن هذه العينة العينة $I_{s(i)}$

 $M_{O}=16$, $M_{C}=12$, $M_{H}=1$, $M_{K}=39$, $M_{I}=127$ (g/mol) يعطى بالـ

الأحماض الأمينية التالية:

$$ext{HOOC-CH}_2 ext{-CH}_2 ext{-CH-COOH} \ (pH_i=3,22)(Glu)$$
 غلوتامیك $ext{pKa1=2,19 , pKa2=9,67} \ ext{pKaR=4,25}$

$$\begin{array}{c|c} N & -CH_2-CH-COOH \\ N & NH_2 \\ H & \end{array}$$

$$(pH_i = 7,58) \text{ (His)}$$
 هیستیدین

$$ext{CH}_3 ext{-CH-COOH} \ ext{NH}_2 \ ext{NH}_i = 6 \) (Ala)$$
لانين

 $(pH_i = 7,58)$ (His) هیستیدین (p $H_i = 6$)(Ala) الانین pKa1=2,34 , pKa2=9,6

- 1) صنّف الحمض الاميني الـ (His).
- 2) يتأيّن الحمض الأميني هيستيدين (His) عند تغير الـ pH من 1 إلى 13 وفق المخطط الآتي:

j- أكتب الصيغ الأيونية (A) و (B) و (C).

ب- استنتج قيمة pka₂.

.pH = 6 في جهاز الهجرة الكهربائية عند (Ala · His · Glu) في جهاز الهجرة الكهربائية عند (3 أ- حدّد بالرسم مواقع هذه الأحماض الأمينية بعد الهجرة.

pH = 6 عند (His) عند pH = 6 عند (His) عند

التمرين الثالث: (7 نقاط)

I- يتفاعل غاز النشادر مع أوكسيد النيتروز عند 25°C وفق التفاعل التالي:

$$NH_{3 (g)} + \frac{3}{2}N_2O_{(g)} \longrightarrow 2N_{2 (g)} + \frac{3}{2}H_2O_{(l)} \dots \Delta H_r^0$$

: أحسب أنطالبي التفاعل ΔH°_{r} علما أن

1)
$$NH_{3 (g)} + \frac{3}{4}O_{2 (g)} \longrightarrow \frac{1}{2}N_{2 (g)} + \frac{3}{2}H_{2}O_{(l)} \Delta H_{1}^{0} = -382,75 \text{ kJ.mol}^{-1}$$

2)
$$N_2O_{(g)} + H_{2(g)} \longrightarrow N_{2(g)} + H_2O_{(l)}$$
 $\Delta H_2^0 = -367,4 \text{ kJ.mol}^{-1}$

3)
$$H_{2(g)} + \frac{1}{2}O_{2(g)} \longrightarrow H_2O_{(l)}$$
 $\Delta H_3^0 = -286 \text{ kJ.mol}^{-1}$

- 2) استنتج أنطالبي تشكيل غاز النشادر NH₃.
- $R = 8.314 \text{ J.mol}^{-1}.K^{-1}$ يعطى: $\Delta H_{0}^{0} \Delta U$ عند $\Delta H_{0}^{0} \Delta U$

4) أحسب طاقة الرابطة N-H في جزيء (4

$$E_{(N=N)} = 945 \text{ kJ.mol}^{-1}$$
 ; $E_{(H-H)} = 436 \text{ kJ.mol}^{-1}$;

: 110°C عند ΔH_{1} (1) أحسب أنطالبي التفاعل (5

يعطى:

$$\Delta H_{vap}^{0}(H_{2}O_{(1)}) = 44 \text{ kJ.mol}^{-1}$$

المركب	NH _{3(g)}	$N_{2(g)}$	$O_{2(g)}$	H ₂ O _(l)	$H_2O_{(g)}$
Cp (J.mol ⁻¹ .K ⁻¹)	29,72	27,84	34,7	75,2	38,2

 m_1 = 200g على m_1 = 200g ماء عند درجة حرارة C_{cal} = 418 $J.K^{-1}$ ماء عند درجة حرارة T_1 =20°C ، نضيف إلى المسعر قطعة جليد كتلتها m_2 = 40g و درجة حرارتها T_2 =-5°C .

. $T_f = 8$ °C درجة حرارة المزيج عند التوازن

) بَيِّن أن عبارة الحرارة النوعية لانصهار الجليد $L_{\rm fus}$ تعطى كما يلي:

$$L_{fus} = -\frac{(C_{cal} + m_1.c_e)(T_f - T_1) + m_2.c_{glace}(273 - T_2) + m_2.c_e(T_f - 273)}{m_2}$$

- . (J/g) بر L_{fus} أحسب (2
- $\Delta H_{\mathrm{fus}}^0$ ثم اكتب تفاعل انصهار الجليد موضحا أمامه قيمة $\Delta H_{\mathrm{fus}}^0$ ثم اكتب المحالية أحسب (3

$$c_e = 4.18 \text{ J.g}^{-1}.\text{K}^{-1}$$
 . $c_{glace} = 2.1 \text{ J.g}^{-1}.\text{K}^{-1}$. $M_{(O)} = 16 \text{ g.mol}^{-1}$. $M_{(H)} = 1 \text{ g.mol}^{-1}$

-----انتهى الموضوع الاول

الموضوع الثاني

يحتوي الموضوع الثاني على 04 صفحات من الصفحة 5 الى الصفحة 8

التمرين الأول: (5 نقاط)

يتكون بوليمير P من مونوميرين M_1 و M_2 حسب التفاعل التالي:

$$n M_1 + n M_2 \longrightarrow H_2C \longrightarrow CH_3 \longrightarrow CH_2-CH_3 \longrightarrow mH_2O$$

لتحديد الصيغة نصف المفصلة لكل من المونوميرين M_1 و M_2 نقوم بسلسلة التفاعلات التالية:

$$A \qquad \xrightarrow{\text{LiAlH}_4} \xrightarrow{\text{H}_2O} \rightarrow B$$

$$B + PCl_5 \longrightarrow C + POCl_3 + HCl$$

$$+ Cl_2 \xrightarrow{\text{AlCl}_3} D + HCl$$

$$D + HNO_3 \xrightarrow{\text{H}_2SO_4} E + H_2O$$

$$E \xrightarrow{Fe/HCl} F$$

$$F + C \xrightarrow{\text{G}} G + HCl$$

$$G + C_2H_5 - NH_2 \longrightarrow M_1 + HCl$$

- 1) جد الصيغ نصف المفصلة للمركبات M_1 ،G،F، E، D،C،B،A و M_2 علما أن M_3 مركب عضوي أكسجيني يتفاعل مع DNPH و يتأثر بكاشف طولنس و كثافته البخارية M_1 ,517.
 - 2) أكتب مقطعا من البوليمير P يتكون من وحدتين بنائيتين.
 - $M_{p} = 130000 g/mol$ أحسب درجة البلمرة للبوليمير P اذا كانت الكتلة المولية المتوسطة (3

التمرين الثانى: (5 نقاط)

يتكون زيت نباتي من 60% من ثلاثي غليسريد متجانس TG و 36% من ثنائي غليسيريد غير متجانس AG_3 و AG_3 من حمض دهني AG_4 حيث AG_3 و AG_3 تتكون من الاحماض الدهنية AG_4 و AG_3 و AG_4 من عدد ذر ات الكربون.

. ${
m M}_{AG_1} = 284 g.mol^{-1}$ حمض دهني مشبع له كتلة مولية : ${
m AG}_1$

- استنتج صيغته

- الوظيفة يعدل الموتاه ببر منغنات البوتاسيوم بوجود حمض الكبريت تعطي مول من حمض أحادي الوظيفة يعدل AG_2 (2 AG_2) NaOH (0.5M) منه ب AG_2 منه ب AG_2 أو منه ب AG_2 (2 منه ب AG_2) منه ب
 - جد صيغته
- الوظيفة الكبريت تعطي حمض كربوكسيلي أحادي الوظيفة AG_3 (3 : AG_3 البوتاسيوم بوجود حمض الكبريت تعطي حمض كربوكسيلي أحادي الوظيفة يتفاعل مع الايثانول C_2H_5-OH فيتشكل مركب كتلته المولية C_2H_5-OH وحمضين ثنائي الوظيفة أحدهما نسبة الأكسجين فيه 34.04%.
 - أ- اكتب الصيغتين المحتملتين للحمض الدهني AG3 .
 - ب-إذا علمت أن الحمض الدهني AG_3 يحتوي رابطة مضاعفة في ذرة الكربون رقم Q_3 استنتج رمزه
 - 4) لتعيين الصيغ نصف المفصلة لكل من TG و DG قمنا بحساب قرائن الاستر واليود لها فكانت النتائج مدونة في الجول التالي:

قرينة اليود	قرينةالاستر	الغليسيريد
86,78	191,34	TG
81,67	180,06	DG

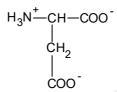
- . DG و الصيغ نصف المفصلة لTG و الصيغ نصف المفصلة الممكنة اTG
 - 5) أحسب قرينة التصبن وقرينة الحموضة للزيت النباتي.

 $C:12g.mol^{-1};\ H:1g.mol^{-1};\ O:16g.mol^{-1};\ Na:23g.mol^{-1};\ K:39g.mol^{-1};\ I:127g.mol^{-1}$

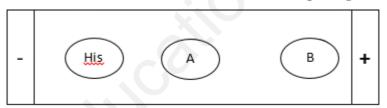
التمرين الثالث: (5 نقاط)

أعطى التحلل المائي لرباعي الببتيد (X) في وجود انزيم مناسب الأحماض الأمينية الموضحة في الجدول التالي:

pH_i	pKa_{R}	pKa_2	pKa_1	صيغته	الحمض الاميني
	6.00	9.17	1.82	NH_CH2-CH-COOH NH2	الهستدين
2.77	3.66	9.60	ç	HOOC-CH ₂ -CH-COOH NH ₂	حمض الاسبارتيك
	///	9.68	2.36	H ₃ C-CH ₂ -CH-HC-COOH H ₃ C NH ₂	الايزولوسين
	10.07	9.11	2.20	HO—CH ₂ -CH-COOH	التيروزين


- يتفاعل الحمض الأميني الأول (الذي لديه مجموعة NH_2 حرة) مع كاشف كز انتوبر وتبيك.
 - تعدل كتلة قدر ها 13.3g من الحمض الأميني الثاني بـ 8g من NaOH
- يحتوي الحمض الأميني الرابع (الذي لديه مجموعة COOH حرة) على ذرتي كربون لا تناظريتين.
 - 1) استنتج الصيغة نصف المفصلة لرباعي الببتيد وأذكر اسمه.
 - . pH = 13 و pH = 1 و (2
 - (3) يتأين حمض الأسبار تيك تبعا لقيم pH الوسط:

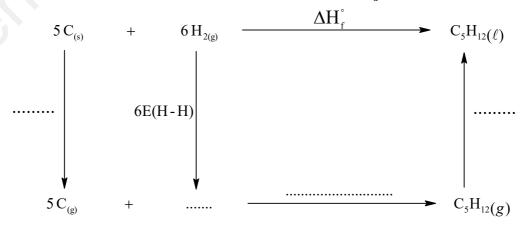
أ- أكتب الصيغ الأيونية لحمض الأسبار تيك عند تغير ال pH من 1 إلى 12


ب- أحسب الـ pKa_1 لحمض الأسبار تيك.

pH = 5,66 عند عند الأسبار تيك عمض الأسبار تيك

د- حدد مجال الـ pH الذي يهجر فيه حمض الأسبار تيك فقط على الشكل التالى:

4) وضع مزيج من ثلاث أحماض أمينية المكونة للببتيد السابق (X) في جهاز الهجرة الكهربائية، أجري بعد ذلك الفصل عند pH = 5,66 ، نتائج الفصل موضحة على شريط الهجرة الكهربائية التالي:



- جد صيغة كل من الحمضين الامينيين A و B مع التعليل.

 $C:12g.mol^{-1}; H:1g.mol^{-1}; O:16g.mol^{-1}; Na:23g.mol^{-1}$

التمرين الرابع: (05 نقاط)

لديك مخطط تشكل البنتان السائل التالى:

1) أكمل المخطط السابق.

 $\Delta H_{\mathrm{f}}^{\circ}(\mathrm{C_5}\mathrm{H_{12}}_{\ell})$ أحسب قيمة أنتالبي تشكل البنتان السائل (2

$$\Delta H_{\text{sub}}^{\circ}(C_{(s)}) = 717 \text{ KJ.mol}^{-1}$$

$$\Delta H_{vap}^{\circ}(C_5 H_{12}) = 26.6 \text{ KJ.mol}^{-1}$$

الرابطة	C-C	С-Н	Н-Н
E(kJ.mol ⁻¹)	348	413	436

3) يحترق البنتان السائل احتراقا تاما عند 25°C:

أ) أكتب معادلة الاحتراق التام للبنتان السائل عند 25°C.

 $\Delta H^{\circ}_{comb}(C_5H_{12(\ell)})$ عند عند $\Delta H^{\circ}_{comb}(C_5H_{12(\ell)})$ البنتان السائل عند عند $\Delta H^{\circ}_{comb}(C_5H_{12(\ell)})$

يعطي:

$$\Delta H_{f}^{\circ}(H_{2}O_{(\ell)}) = -286 \,\text{kJ/mol}$$
; $\Delta H_{f}^{\circ}(CO_{2(g)}) = -393 \,\text{kJ/mol}$

ج) أحسب أنتالبي الاحتراق للبنتان عند C°80.

T(eb) = 35°C: يعطى: درجة غليان البنتان السائل

المركب	$C_5H_{12(\ell)}$	$C_5H_{12(g)}$	$O_{2(g)}$	$CO_{2(g)}$	$\mathrm{H_{2}O}_{(\ell)}$
Cp(J.K ⁻¹ .mol ⁻¹)	166,91	122,88	29,5	37,20	75,24

-----انتهى الموضوع الثاني

	العلا	عناصر الإجابة
مجموع	مجزأة	التمرين الأول: (7نقاط)
0.50		1) التفاعل الحادث:
	0.25x2	$C_nH_{2n-2}+H_2O \xrightarrow{Hg^+} C_nH_{2n}O$
	0.2382	24
		(n) إيجاد (n): نَقِفًا عِلْ صَاءِ اللَّهِ الل
1.25		$C_{n}H_{2n-2} \xrightarrow{\text{cond}} H_{2}O$ $M_{n} = (14n, 2) \text{ and } \text{ cond}$
1,23		$M_{(A)} = (14n-2)g \xrightarrow{\text{right}} 18g$
		4g
		$M_{(A)} = \frac{18 \times 4}{1.8} = 40 \text{ g/mol}$
		$14n-2 = 40 \implies n=3$
		الصيغة المجملة لـ (A): C ₃ H ₄
	0.5	الصيغة المجملة لـ (B): C ₃ H ₆ O
	0.5	الصيغة نصف المفصلة لـ (A): CH ₃ -C≡CH
	0.25	الصيغة نصف المفصلة لـ (B): CH ₃ -CO-CH ₃ (B)
		(C): CH_3 - CH = CH_2 (D): CH_3 - CH - CH_3 CH_3 (E): O_2N - CH - CH_3 CH_3
3.25	0.25x7	(F): H_2N —CH-CH ₃ CH_3
	0.2387	(I): H_2N —CH ₃ CH_3 CH_3
		ب- هو الوسيط المستعمل في التفاعل رقم 3/: حمض الكبريت المركز H ₂ SO _{4 conc}
	0.25	جـ- الصيغة العامة لـ P.
	0.25	- + N -
		- حساب الكتلة المولية المتوسطة للبولمير P:
		$n = \frac{M_{Poly}}{M'}$ $M' = M_{C_{10}H_{11}ON} = 161 \text{ g/mol}$
	0.25x2	$M_{Poly} = n \times M' = 1442 \times 161 = 232162 \text{ g/mol}$
		حيث 'M الكتلة المولية للوحدة البنائية

مة	العلا	عناصر الإجابة
مجموع	مجزأة	
		د- الصيغة نصف المفصلة لهذا المركب: CHCH-CH.
		CH ₃ -CH-CH ₃
		- التفاعل الحادث:
	0.5	CH_3 - CH - CH_3 + CH_3 - CH - CH_3 + CH_3
		4) أ- التفاعلات التي تسمح بتحضير المركب (B) انطلاقًا من المركب (C).
	0.25x2	(C) CH_3 - $CH=CH_2+H_2O\xrightarrow{H_2SO_4} CH_3$ - $CH(OH)$ - CH_3
1.25	0.25	CH_3 - $CH(OH)$ - $CH_3 \xrightarrow{KMnO_4} (\mathbf{B}) CH_3$ - CO - CH_3
	0.23	ب- تفاعل يسمح بالحصول على المركب (F) انطلاقًا من المركب (I) .
	0.50	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
		5) أ- الصيغ نصف المفصلة للمركبات: (J) و (K).
	0.25x2	C_2H_5-HN C_2H_5-HN C_2H_5-HN C_2H_5-HN C_2H_5-HN C_2H_5-HN C_2H_5-HN
0.75		C_2H_5 -HN- CH - CH_3 CH_3 CH_3 CH_3
		(K) (J)
	0.25	ب- المركب (J): أميد أحادي الاستبدال.
		التمرين الثاني: (6 نقاط)
		I-1) الكتلة المولية لثنائي الغلسيريد (DG).
0.25		$M_{(DG)}(g / mol) \longrightarrow 100\%$
		$5M_{(O)}(g / mol) \longrightarrow 14,134\%$
		$100 \times 5M_{(0)}$
	0.25	$M_{(DG)} = \frac{100 \times 5M_{(O)}}{14,134} = 566(g / mol)$
		2) أ- الكتلة المولية لـ (A).
		$M_{(A)}(g \mid mol) \longrightarrow M_{(KOH)}(g \mid mol)$
		$1g \longrightarrow I_S . 10^{-3} g$
	0.25	$M_{(KOH)}$ 56
0.75		$M_{(A)} = \frac{M_{(KOH)}}{I_s.10^{-3}} = \frac{56}{220,48 \times 10^{-3}} = 254 \text{ g/mol}$
0.75		ب- الصيغة نصف مفصلة لـ (A).
	0.25	$M_{(A)} = M_{(C_n H_{2n-2} O_2)} = 14n + 30 = 254 \Rightarrow n = \frac{254 - 30}{14} = 16$
	0.25	$CH_3 - (CH_2)_5 - CH = CH - (CH_2)_7 COOH$

	العلا	عناصر الإجابة
مجموع	مجزأة	
		3) أ- كتابة التفاعل مبيئًا صيغة المركب (C). CH2-OH
	0.25	$(DG) + 2 H_2O \longrightarrow (A) + (B) + CHOH$
		CH ₂ -OH
1.50		(C)
		ب- عدد الروابط التي يحتويها (DG).
		$M_{(DG)}(g/mol) \longrightarrow xM_{(I_2)}(g/mol)$
		$100g(DG) \longrightarrow I_ig$
		$I_i \times M_{(DG)} = 44.88 \times 566$
	0.25	$x = \frac{I_i \times M_{(DG)}}{100 \times M_{(I_2)}} = \frac{44,88 \times 566}{100 \times 254} = 1$
		جـ الصيغة العامة لـ (B) و صيغته نصف المفصلة.
		بما أن (DG) يحتوي على رابطة مزدوجة واحدة فقط والحمض الدهني (A) يحتوي
	0.25	على رابطة مزُدوجة واحدة فإن الحمض الدهني (B) مشبع وصيغته العامّة من الشكل
	0.23	$C_nH_{2n}O_2$
		من تفاعل التحليل المائي لـ (DG)
		$M_{(DG)} + 2M_{(H_2O)} = M_{(A)} + M_{(B)} + M_{(Glyc\acute{e}rol)}$
		$M_{(B)} = M_{(C_n H_{2n} O_2)} = M_{(DG)} + 2M_{(H_2 O)} - M_{(A)} - M_{(Glycérol)}$
		$M_{(C_nH_{2n}O_2)} = 566 + 2 \times 18 - 254 - 92$
	0.25	$14n + 32 = 256 \Rightarrow n = 16$
		الصيغة نصف مفصلة لـ (B)
	0.25	$B(C_{16}H_{32}O_2) \Rightarrow CH_3-(CH_2)_{14}-COOH$
		د- الصيغة نصف المفصلة لـ (DG).
		$CH_2-O-C-(CH_2)_{14}-CH_3$
	0.25	O $CH-O-C-(CH2)5-CH=CH-(CH2)7-CH3$
		СН ₂ -ОН
		$I_{\rm S(luque 18)}$ قرينة تصبن هذه العينة والعينة العينة والعينة العينة العين
	0.25	$I_{S(A)} = I_{S(DG)} \cdot \frac{80}{100} + I_{S(A)} \cdot \frac{10}{100} + I_{S(B)} \cdot \frac{10}{100}$
		100
		- حساب قرينة تصبن الحمض الدهني (B)
1 00		$M_{(B)}(g \mid mol) \longrightarrow M_{(KOH)}(g \mid mol)$
1.00		$1g \longrightarrow I_S.10^{-3}g$
	0.25	$I_{S(B)} = I_{a(B)} = \frac{M_{(KOH)}}{M_{(R)} \cdot 10^{-3}} = \frac{56}{256 \times 10^{-3}} = 218.75$
		$M_{(B)} \cdot 1_{a(B)} = M_{(B)} \cdot 10^{-3} = 256 \times 10^{-3} = 210.75$

العلامة		عناصر الإجابة
مجموع	مجزأة	عاصر اوِجاب
		- حساب قرينة تصبن (DG).
		$M_{(DG)}(g \mid mol) \longrightarrow 2M_{(KOH)}(g \mid mol)$
		$1g \longrightarrow I_s.10^{-3}g$
		$2M_{(KOH)}$ 2×56
	0.25	$I_{S(DG)} = \frac{2M_{(KOH)}}{M_{(DG)} \cdot 10^{-3}} = \frac{2 \times 56}{566 \times 10^{-3}} = 197.88$
		علمًا أن: I _{S(A)} = I _{a(A)} = 220.48 : علمًا
		$I_{S(\frac{100}{100})} = \frac{80}{100} \times 197.88 + \frac{10}{100} \times 220.48 + \frac{10}{100} \times 218.75$
	0.25	$\mathrm{I}_{\mathrm{S}(rac{1}{2}-1)}=202{,}22$
0.25	0.25	II- 1) تصنيف الحمض الأميني His: حمض أميني قاعدي (يصنف كذلك حلقي غير عطري)
		2) أ- الصيغ الأيونية:
		Α Β
		$H_3N^{\stackrel{+}{-}}CH-COO^{\stackrel{-}{-}}$ $H_3N^{\stackrel{+}{-}}CH-COO^{\stackrel{-}{-}}$ $H_2N-CH-COO^{\stackrel{-}{-}}$ $H_2N-CH-CO$
	0.25x3	-
		NH NH NH
1.25		
		ب- استنتاج قیمهٔ pka ₂ : ماری + nKa
		$pH_{i} = \frac{pKa_{2} + pKa_{R}}{2}$
	0.25x2	$pKa_{2} = 2pH_{1} - pKa_{R} = 9,16$
		Z I K
		pH = 6 أ- نتائج الهجرة الكهربائية عند $pH = 6$:
1.00	0.25x3	
	0.20116	
		His Ala Glu
		ب- الصيغة الأيونية التي يهاجر بها الحمض الأميني هيستيدين (His) عند pH = 6 :
		· · · · · · · · · · · · · · · · · · ·
		H ₃ N ⁺ −CH−COO ⁻
	0.25	A:
		NH N+-/
		H, N ——
	<u> </u>	

العلامة		عناصر الإجابة
مجموع	مجزأة	التمرين الثالث: (07 نقاط)
		$\Delta H_{_{_{eta}}}^{\circ}$ عساب $\Delta H_{_{_{eta}}}$
0.75	0.25	
0.73	0.23	$\Delta H_{r}^{\circ} = \Delta H_{1}^{\circ} + \frac{3}{2} \Delta H_{2}^{\circ} - \frac{3}{2} \Delta H_{3}^{\circ}$
		$\Delta H_r^{\circ} = -382,75 + \left[\frac{3}{2} \times (-367,4) - \frac{3}{2} \times (-286) \right]$
	0.50	$\Delta H_r^{\circ} = -504,85 kJ / mol$
		(1) من التفاعل $\Delta H_f^{\circ}(NH_{3(g)})$ حساب (2
		$\Delta H_{r}^{\circ} = \sum \Delta H_{f(Produits)}^{\circ} - \sum \Delta H_{f(Réactifs)}^{\circ}$
0.75	0.25	$\Delta H_{1}^{\circ} = \frac{1}{2} \Delta H_{f}^{\circ}(N_{2(g)}) + \frac{3}{2} \Delta H_{f}^{\circ}(H_{2}O_{(\ell)}) - \Delta H_{f}^{\circ}(NH_{3(g)}) - \frac{3}{2} \Delta H_{f}^{\circ}(O_{2(g)})$
		$\Delta H_{f}^{\circ}(NH_{3(g)}) = \frac{3}{2} \Delta H_{f}^{\circ}(H_{2}O_{(\ell)}) - \Delta H_{1}^{\circ}$
	0.50	$\Delta H_f^{\circ}(NH_{3(g)}) = \frac{3}{2} \times (-286) - (-382) = -46,25 \text{KJ/mol}$
		$\Delta H - \Delta U$ عساب الفرق (3
0.75	0.25	$\Delta H_r^0 - \Delta U = \Delta n_g \times R \times T$
	0.25	$\Delta n_g = 2 - (1 + \frac{3}{2}) = -0.5 \text{ mol}$
	0.25	$\Delta H_r^0 - \Delta U = -0.5 \times 8.314 \times 298 = -1.239 \ kJ \ / \ mol$
		$\Delta H^0_{f(N-H)}$ عساب أنطالبي تشكل الرابطة خطالبي تشكل الرابطة (4
		$\frac{1}{2}N_{2(g)} + \frac{3}{2}H_{2(g)} \xrightarrow{\Delta H_{f}^{0}(NH_{3(g)})} NH_{3(g)}$
1.25	0.75	
		$\frac{1}{2}E_{(N=N)}$ $\frac{3}{2}E_{(H-H)}$ $-3E_{(N-H)}$
		$ \begin{array}{cccc} & $
		$SII_{(g)}$
		$\Delta ext{H}^{\circ}_{ ext{f(N-H)}} =$ - $\Delta ext{H}^{\circ}_{ ext{d(N-H)}}$: حيث
	0.25	$\Delta H_{f(NH_{3(g)})}^{\circ} = \frac{1}{2} E_{(N=N)} + \frac{3}{2} E_{(H-H)} - 3E_{(N-H)}$
		$E_{\text{(N-H)}} = \frac{\frac{1}{2} E_{\text{(N=N)}} + \frac{3}{2} E_{\text{(H-H)}} - \Delta H_{\text{f(NH}_{3(g)})}^{\circ}}{3}$
		$E_{\text{(N-H)}} = \frac{\frac{1}{2}(945) + \frac{3}{2}(436) - (-46,25)}{3}$
	0.25	$E_{\text{(N-H)}} = 390,91 kJ.mol^{-1}$
		(****)

مة	العلا	عناصر الإجابة
مجموع	مجزأة	, .
		$^{\circ}$ عند ΔH_r° عند ΔH_r°
		$\Delta H_{383} = \Delta H_{298}^{\circ} + \int_{298}^{373} \Delta Cp \times dT + \frac{3}{2} \Delta H_{vap(H_2O_{(\ell)})} + \int_{373}^{383} \Delta Cp' \times dT$
1.50	0.25	$= \Delta H_{298}^{\circ} + \Delta C p (373 - 298) + \frac{3}{2} \Delta H_{vap(H_2O_{(\ell)})} + \Delta C p' (383 - 373)$
	0.25	$\Delta Cp = \sum Cp \left(\text{Produits} \right) - \sum Cp \left(R \acute{e} actifs \right)$
	0.25	$= \left[\frac{1}{2}Cp(N_{2(g)}) + \frac{3}{2}Cp(H_{2}O_{(\ell)})\right] - \left[Cp(NH_{3(g)}) + \frac{3}{4}Cp(O_{2(g)})\right]$
	0.25	$= \left[\left(\frac{1}{2} \times 27,84 \right) + \left(\frac{3}{2} \times 75,2 \right) \right] - \left[29,72 + \left(\frac{3}{4} \times 34,7 \right) \right] = 70,97 \text{J/mol.K}$
		$\Delta Cp' = \left[\frac{1}{2}Cp(N_{2(g)}) + \frac{3}{2}Cp(H_2O_{(g)})\right] - \left[Cp(NH_{3(g)}) + \frac{3}{4}Cp(O_{2(g)})\right]$
	0.25	$= \left[\left(\frac{1}{2} \times 27,84 \right) + \left(\frac{3}{2} \times 38,2 \right) \right] - \left[29,72 + \left(\frac{3}{4} \times 34,7 \right) \right] = 15,47 \text{J/mol.K}$
		$\Delta H_{373} = -382,75 + 70,97 \times (373 - 298) \times 10^{-3} + \frac{3}{2} \times 44 + 15,47 \times (383 - 373) \times 10^{-3}$
	0.25	$\Delta H_{373} = -311,27kJ / mol$
		: $L_{ m fus}$ علاقة البات علاقة ي الماء -1 - $\sum { m Q_i}=0$ ${ m Q_{cal}}+{ m Q_1}+{ m Q_{fus}}+{ m Q_2}+{ m Q_3}=0$
	0.25	$Q_{cal} = C_{cal}(T_f - T_1)$ $Q_{cal} = C_{cal}(T_f - T_1)$ $Q_{l} = m_1 \times c_{eau} \times (T_f - T_1)$ $Q_{fus} = m_{glace} L_{fus}$
0.50		$Q_{\text{cal}} = C_{\text{cal}} (T_f - T_1) \qquad Q_1 = M_1 \times C_{\text{eau}} \times (T_f - T_1) \qquad Q_{\text{fus}} = M_{\text{glace}} L_{\text{fus}}$ $Q_2 = m_2 \times C_{\text{glace}} \times (273 - T_2) \qquad Q_3 = m_2 \times C_{\text{eau}} \times (T_f - 273)$
		$ (C_{cal} + m_1 \times c_{eau}) \times (T_f - T_1) + m_{glace} L_{fus} + m_2 \times c_{glace} \times (273 - T_2) + m_2 \times c_{eau} \times (T_f - 273) = 0 $
	0.25	
	0.23	$L_{\text{fus}} = -\frac{(C_{\text{cal}} + m_1 \times c_{\text{eau}}) \times (T_{\text{f}} - T_1) + m_2 \times c_{\text{glace}} \times (273 - T_2) + m_2 \times c_{\text{eau}} \times (T_{\text{f}} - 273)}{m_{\text{glace}}}$
		نام المحساب ی ${ m L_{fus}}$: L $_{ m fus}$
0.25		$L_{\text{fin}} = -\frac{(418 + 200 \times 4,18) \times (281 - 293) + 40 \times 2, 1 \times (273 - 268) + 40 \times 4, 18 \times (281 - 273)}{(281 - 293) \times (281 - 293) + 40 \times 2, 1 \times (273 - 268) + 40 \times 4, 18 \times (281 - 273)}$
0.25	0.25	40
	0.23	$L_{ extit{fus}} = 332,26J$ / g $\Delta H_{ extit{fus}}^0$ -3
		•
0.75	0.25	$\Delta ext{H}_{ ext{fus}}^0 = rac{ ext{Q}_{ ext{fus}}}{ ext{n}} = rac{ ext{m}_{ ext{glace}}. ext{L}_{ ext{fus}}}{ ext{n}} \; , \; \; ext{n}_{ ext{glace}} = rac{ ext{m}_{ ext{glace}}}{ ext{M}_{ ext{H}_2 ext{O}}}$
0.75	0.25	$\Delta H_{\text{fus}}^{0} = \frac{M_{\text{H}_2\text{O}}.m_{\text{glace}}.L_{\text{fus}}}{m_{\text{glace}}} = M_{\text{H}_2\text{O}}.L_{\text{fus}} = 18 \times 332.26$
	0.25	$\Delta H_{\text{fus}}^0 = 5.98 \text{kJ.mol}^{-1} \simeq 6 \text{ kJ.mol}^{-1}$
	0.25	- كتاب تفاعل انصبهار الجليد
	0.25	$H_2O_{(s)}\longrightarrow H_2O_{(l)}$ $\Delta H_{fus}=6 \text{ kJ.mol}^{-1}$

	العلاه	عناصر الإجابة
مجزأة	مجزأة	
	0,25	التمرين الأول: M_2 نقاط) 1- ايجاد الصيغ نصف المفصلة للمركبات M_1 ، G ، G ، G ، G ، G . G
3,75	0,25	$M = d \times 29$ $M = 1.517 \times 29$ $M = 44g/\text{mol}$
3,73	0,25	$M = 44g/\text{mol} $ $M = 14n + 16 $ $\Rightarrow n = 2$
	0,50	O H :هي المفصلة لـ A هي: H و منه:
		В: H ₃ C—CH ₂ —OH
	0,25 x 6	D: $E: \bigvee_{NO_2} F: \bigvee_{NH_2} G: \bigvee_{HN-CH_2-CH_3}$
	0,50	M_1 H_3 C— CH_2 — NH — CH_2 — CH_3
	0,50	M_2 : HO C $(CH_2)_3$ OH OH
0,50	0,50	2- مقطع من البوليمير P يتكون من وحدتين بنائيتين: O O O O N-C-(CH ₂)-C-N H ₂ C-CH ₃ CH ₂ -CH ₃
0,75	0,25	: حساب درجة البلمرة $n=\frac{M_p}{M_m}$ $M_m=(14\times 2)+(12\times 15)+(1\times 20)+(16\times 2)$
	0,25	$M_m = 260g / mol$
	0,25	$n = \frac{130000}{260} = 500$

	العلا	عناصر الإجابة
مجموع	مجزأة	التمرين الثاني: (05 نقاط)
		`
		: AG_1 استنتاج صيغة الحمض الدهني (1 $M=284~\mathrm{g/mol}$
0,50		$M_{AG_1} = 284 \text{ g/mol}$
0,50		$: C_n H_{2n} O_2$
	0,25	14n+32=284
		$n = \frac{284 - 32}{14} = 18$
	0,25	$CH_3-(CH_2)_{16}-COOH$: AG_1 الصيغة نصف المفصلة للحمض الدهني
		يمكن استعمال طريقة ثانية:
		$M_{AG_1} = 284 \text{ g/mol}$
		$CH_3 - (CH_2)_X - COOH$
		15 + 14x + 45 = 284
		284-60
		$x = \frac{284 - 60}{14} = 16$
		: AG_1 الصيغة نصف المفصلة للحمض الدهني
		$CH_3 - (CH_2)_{16} - COOH$
		يجاد صيغة الحمض الدهني AG_2 : AG_2
	مول	أكسدة الحمض الدهني AG_2 ببر منغنات البوتاسيوم بوجود حمض الكبريت المركز تعطي
	نفة	من حمض أحادي الوظيفة ومول من حمض ثنائي الوظيفة فهو يحتوي على رابطة مضاء
1,00		واحدة ويمكن كتابة صيغته على الشكل التالي:
, , , ,		$CH_3 - (CH_2)_X - CH = CH - (CH_2)_Y - COOH$
		تحديد صيغة الحمض الأحادي الوظيفة: NaOUI من علم المحادي الوظيفة:
	0,25	1mol d'acide → 1 mol de NaOH
		$M_{\text{acide}} \longrightarrow 40g$
		$1,58 \text{ g} \longrightarrow 20 \times 10^{-3} \times 0,5 \times 40$
		$M_{\text{acide}} = \frac{1.58}{0.5 \times 20 \times 10^{-3}} = 158 \text{g/mol}$
		$CH_3 - (CH_2)_v - COOH$
	_	15 + 14x + 45 = 158
	0,25	158-60
		$x = \frac{158 - 60}{14} = 7$

العلامة		عناصر الإجابة
مجموع	مجزأة	
		بما أن الحمض الدهني AG_1 والحمض الدهني AG_2 والحمض الدهني AG_3 لهم نفس عدد ذرات المراث ألم من براث المراث
		الكربون أي 18 ذرة كربون
		$CH_3 - (CH_2)_7 - CH = \mathbf{C}H - (CH_2)_y - COOH$
	0,25	y = 7
		الصيغة النصف المفصلة للحمض الدهني AG_2 هي:
	0,25	$CH_3 - (CH_2)_7 - CH = CH - (CH_2)_7 - COOH$
	ŕ	AG_3 أ-الصيغتين المحتملتين للحمض الدهني أ-الصيغتين المحتملتين الحمض الدهني AG_3
1,00		إيجاد صيغة الحمض أحادي الوظيفة
1,00		حساب كتلته :
		$M_{AG} + M_{alcool} = M_{ester} + M_{eau}$
	0,25	$M_{AG} = 144 - 46 + 18 = 116 gmol^{-1}$
		$14n + 32 = 116 \Longrightarrow n = 6$
		H_3C — $(CH_2)_4$ — $COOH$
		$\frac{64}{34.04} = \frac{M_{AG'}}{100} \Rightarrow M_{AG'} = 188 g mol^{-1}$
		34.04 100 $HOOC$ ——(CH ₂)x—COOH
		$x = \frac{188 - 90}{14} = 7$
		14
		و منه صيغته هي: HOOC——(CH ₂) ₇ —COOH
		AG_3 الصيغتين المحتملتين للحمض الدهنى:
	0,25	H_3C — $(CH_2)_4$ — CH — CH — CH_2 — CH — CH — $(CH_2)_7$ — $COOH$
	0,25	H_3C — $(CH_2)_4$ — CH — CH — $(CH_2)_7$ — CH — CH — CH_2 — $COOH$
	0,25	$C18:2\Delta^{9,12}$. هو AG_3 هو AG_3 ب $-$ رمز الحمض الدهني
	ĺ	4) تعيين الصيغة نصف مفصلة ل TG
		حساب الكتلة المولية الجزئية
		$ \begin{cases} M_{TG} \longrightarrow 3 \times 56 \\ 1g \longrightarrow I_{-} \times 10^{-3} \end{cases} \Rightarrow M_{TG} = \frac{3 \times 56}{191,34 \times 10^{-3}} $
2,50	0,25	(3 e)
·		$M_{TG} = 878g / mol$
		حساب عدد الروابط المضاعفة : (۵۶۰۰۰۰ (۲۶۰۰۰ (۱۳۰۰ ۱۳۰۰ ۱۳۰۰ ۱۳۰۰ ۱۳۰۰ ۱۳۰۰ ۱۳۰۰
	0,25	$ \begin{cases} M_{TG} \longrightarrow n \times 254 \\ 100g \longrightarrow I_{i} \end{cases} \Rightarrow n = \frac{878 \times 86,78}{254 \times 100} $
	•	$ \begin{pmatrix} 100g \longrightarrow I_i \\ n = 3 \end{pmatrix} $ 234×100
		n = 3

امة	العلا	عناصر الإجابة
مجموع	مجزأة	, ,
	0,25	TG - Label Labe
	0,25	DG الصيغ نصف المفصلة لـ DG الصيغ نصف المفصلة لـ DG الصيغ نصف DG حساب الكتلة المولية الجزيئية ل M_{DG} \Longrightarrow M_{DG} \Longrightarrow M_{DG} $=$ $\frac{2\times56}{180,06\times10^{-3}}$ M_{DG} $=$ $622g$ $/$ mol
	0,25	$ \begin{cases} M_{DG} \longrightarrow n \times 254 \\ 100g \longrightarrow I_{i} \end{cases} \Rightarrow n = \frac{622 \times 81,67}{254 \times 100} $ $ n = 2 $
	0,25	$DG \ \ DG \ \ DG \ \ \ DG \ \ DG \ \ DG \ \ DG \ \ DG \ \ DG \ \ DG \ \ DG \ \ DG \ \ DG \ \ DG \ \ DG \ \ DG \ \ DG \ \ DG \ \ DG \ \ DG \ \ DG \ \ \ DG \ \ DG \ \ DG \ \ DG \ \ DG \ \ DG \ \ DG \ \ DG \ \ DG \ \ DG \ \ DG \ \ DG \ \ DG \ \ DG \ \ DG \ \ DG \ \ DG \ \ DG \ \ DG \ \ DG \ \ DG \ \ DG \ \ DG \ \ DG \ \ \ D$
	0,25	$H_{2}C-OH$ O
	0,25	H_2 C-OH U_2 U_3 U_4 U_4 U_5 U_5 U_6 U_6 U_7 U_8
	0,25	$I_S = \frac{191,34 \times 60}{100} + \frac{180,06}{100} \times 36 + \frac{197,18}{100} \times 4 = 187,51$
	0,25	$I_a = \frac{197,18}{100} \times 4 = 7,88$: قرينة الحموضة للزيت

	العلا	عناصر الإجابة
مجموع	مجزأة	التمرين الثالث:(05 نقاط)
1,25		1) استنتاج الصيغة نصف المفصلة لرباعي الببتيد وذكر اسمه: - الحمض الأميني الأول $-NH_2$ حرة): بما أنه يتفاعل مع كاشف كزانتوبروتييك فهو حمض أميني حلقي عطري وبالتالي هو التيروزين.
		$ \begin{cases} M & \longrightarrow 2 \times M_{NaOH} \\ 13.3g & \longrightarrow 8g \end{cases} \Rightarrow M = 133g .mol^{-1} $
		وهي الكتلة المولية لحمض الأسبارتيك الحمض الأميني الرابع: بما أنه يحتوي على ذرتي كربون لا تناظريتين فهو الايزولوسين ومنه فالحمض الأميني الثالث هو: الهستيدين وبالتالي الصيغة نصف المفصلة لرباعي الببتيد هي:
	0,25 x 4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	0,25	OH اسمه: تیروزیل أسبارتیل هیستیدیل ایزولوسین. 2) كتابة صیغة الببتید : - عند pH = 1 :
1,00	0,50	H_3N^{\uparrow} HC C NH CH C NH CH CH CH CH CH CH CH C
	0)	: $pH = 13$ - O O O H ₂ N-HC—C—NH—CH—C—NH—HC—C—NH—CH—COO
	0,50	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

العلامة مجنوع		عناصر الإجابة
ريب	مبررات	3) يتأين حمض الاسبار تيك تبعا لقيم pH الوسط:
		أ- كتاب الصيغ الأيونية لحمض الأسبارتيك عند تغير ال pH من 1 إلى 12 :
2,25		$pKa_1 = 1,88$ $pKa_R = 3,66$ $pKa_2 = 9,60$
	0,25	→
	X	H_3N^{+} CH—COOH H_3N^{+} CH—COO H_3N^{+} CH—COO H_2N CH—COO H_2N^{+} CH2 H_2N^{+} CH2 H_2N^{+} CH2
	4	COOH COO COO COO
		pKa_1 المصن الأسبار تيك:
	0,25	$pH_i = \frac{pKa_1 + pKa_R}{2} \Rightarrow pKa_1 = 2pH_i - pKa_R$
		$pKa_1 = (2 \times 2, 77) - 3,66$
	0,25	$pKa_1 = 1,88$
		pH = 5.66 عند عند $pH = 5.66$ عند $pH = 5.66$
	0,25	H_3N^{+} CH-COO H_3N^{+} CH-COO
	X	H ₂ C H ₂ C COOT COOT
	2	H ₃ N ⁺ —ÇH-COO ⁻
		H ₂ C
	0.25	د- تحدید مجال ال pH الذي یهجر عنده حمض الأسبار تیك علی شكل coo فقط.
	0,25	$pH_i \prec pH \leq pH_e = 6.63$ اوجد صيغة كل من الحمضين الامينيين \mathbf{A} و \mathbf{B} مع التعليل:
		$pH = pH_{i_A}$ في خط الوسط عند $pH = 5.66$ في نام الحمصين الأمينيين $pH = 5.66$ في $pH = 6.66$
		وبالتالي A هو التيروزين لأن:
0,50	0,25	$pH_{i_{Tyr}} = \frac{pKa_1 + pKa_R}{2} \Rightarrow pH_{i_{Tyr}} = \frac{2.20 + 9.11}{2}$
		$pH_{i_{Tyr}} = 5.66$
		:B ایجاد
		عند $pH = 5.66$ يوجد حمض الأسبارتيك في حالة توازن بين صيغتين:
	0,25	$H_3N^{\frac{1}{2}}$ CH-COO $H_3N^{\frac{1}{2}}$ CH-COO
	,25	H_3N^{+} $CH^{-}COO^{-}$ H_3N^{+} $CH^{-}COO^{-}$ H_2C H_2C H_2C $COOH$ \bullet $COOH$
		وبالتالي B هو حمض الأسبارتيك (لأن الايزولوسين يهاجر الى القطب السالب).

العلامة		عناصر الإجابة
مجموع	مجزأة	
		التمرين الرابع: (05 نقاط)
		1) إكمال المخطط:
		$5C_{(s)}$ + $6H_{2(g)}$ \longrightarrow $C_5H_{12(\ell)}$
1,00	0,25	
1,00	X	$5\Delta H_{sub}^{\circ}(C)$ $6E(H-H)$ $-\Delta H_{vap}^{\circ}(C_5H_{12})$
	4	Vap V 3 122
		$5 C_{(g)} + 12 H_{(g)} - 4E(C-C) - 12E(C-H)$ $C_5 H_{12(g)}$
		2) حساب قيمة أنتالبي تشكل البنتان السائل:
4.00	0.25	$\Delta H_{f}^{\circ}(C_{5}H_{12(\ell)}) = 5\Delta H_{sub}^{\circ}(C) + 6E(H - H) - 4E(C - C) - 12E(C - H) - \Delta H_{vap}^{\circ}(C_{5}H_{12})$
1,00	0,25 0,25	$\Delta H_{f}^{\circ}(C_{5}H_{12(\ell)}) = 5 \times (717) + 6 \times (436) - 4 \times (348) - 12 \times (413) - 26,6$
	0,23	$\Delta H_{f}^{\circ}(C_{5}H_{12(\ell)}) = 3 \times (717) + 0 \times (430) + 4 \times (340) + 12 \times (413) + 20,0$ $\Delta H_{f}^{\circ}(C_{5}H_{12(\ell)}) = -173,6 \text{ Kj.mol}^{-1}$
	0,50	
		3) أ) معادلة الاحتراق التام للبنتان السائل عند °25:
	0,50	$C_5H_{12(\ell)} + 8O_{2(g)} \longrightarrow 5CO_{2(g)} + 6H_2O_{(\ell)}$
		ب) حساب أنتالبي الاحتراق للبنتان السائل عند °25:
		$Hess$: نطبق قانون Hess: نطبق قانون $\Delta H_{comb}^{\circ} = \sum \Delta H_{f}^{\circ}(Produits) - \sum \Delta H_{f}^{\circ}(Reactifs)$
2 00		$\Delta \Pi_{\text{comb}} = \sum \Delta \Pi_{\text{f}} (\text{Reactifs})$
3,00	0,25	$\Delta H_{comb}^{\circ} = \left[5\Delta H_{f}^{\circ}(CO_{2(g)}) + 6\Delta H_{f}^{\circ}(H_{2}O_{(\ell)}) \right] - \left[\Delta H_{f}^{\circ}(C_{5}H_{12(\ell)}) + 8\Delta H_{f}^{\circ}(O_{2(g)}) \right]$
		$\Delta H_{comb}^{\circ} = [5 \times (-393) + 6 \times (-286)] - [(-173, 6) + 8 \times (0)]$
	0,50	$\Delta H_{comb}^{\circ} = -3507,4 \text{ kJ.mol}^{-1}$
	0,20	ج) حساب أنتالبي الاحتراق للبنتان عند C°8. نطبق علاقة كيرشوف:
		T
		$\Delta H_{T}^{\circ} = \Delta H_{T_{0}}^{\circ} + \int_{T_{0}}^{1} \Delta C_{P} \times dT$
	0,25	$\Delta H_{353}^{\circ} = \Delta H_{298}^{\circ} + \Delta C_{P} \times \Delta T - \Delta H_{vap}^{\circ} (C_{5} H_{12}) + \Delta C'_{P} \times \Delta T'$
		$\Delta C_{p} = \left[5C_{p}(CO_{2(g)}) + 6C_{p}(H_{2}O_{(\ell)}) \right] - \left[C_{p}(C_{5}H_{12(\ell)}) + 8C_{p}(O_{2(g)}) \right]$
		$\Delta C_{P} = [5 \times (37,20) + 6 \times (75,24)] - [(166,91) + 8 \times (29,5)]$
	0,25	$\Delta C_{\rm p} = 234,53 \rm j.mol^{-1}.K^{-1}$

إجابة الموضوع الثاني مادة: هندسة الطرائق / الشعبة: تقني رياضي / بكالوريا تجريبي دورة: ماي 2021

العلامة		عناصر الإجابة
مجموع	مجزأة	عاص الإجاب
		$\Delta T = 35 - 25$
	0,25	$\Delta T = 10 \text{ K}$
		$\Delta C'_{P} = \left[5C_{P}(CO_{2(g)}) + 6C_{P}(H_{2}O_{(\ell)})\right] - \left[C_{P}(C_{5}H_{12(g)}) + 8C_{P}(O_{2(g)})\right]$
		$\Delta C'_{P} = [5 \times (37,20) + 6 \times (75,24)] - [(122,88) + 8 \times (29,5)]$
	0,25	$\Delta C'_{p} = 278,56 \text{ j.mol}^{-1}.\text{K}^{-1}$ $\Delta T' = 80 - 35$
	0,25	$\Delta T' = 45 \text{ K}$
		$\Delta H_{353}^{\circ} = -3507,4 + 234,53 \times 10^{-3} \times 10 - 26,6 + 278,56 \times 10^{-3} \times 45$
	0,50	$\Delta H_{353}^{\circ} = -3519,12 \text{ kJ.mol}^{-1}$