الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطنى للامتحانات والمسابقات

وزارة التربية الوطنية

دورة : ماي2022

امتحان: شهادة البكالوريا

الشعبة: علوم تجريبية

اختبار في مادة : الرياضيات المدة :

على المترشح أن يختار أحد الموضوعين التاليين الموضوع الأول

التمرين الأول: (04 نقاط)

لكل سؤال جواب واحد فقط صحيح من بين الأجوبة الثلاثة المقترحة عينه مع التعليل
$$T_n = \ln 2 + \ln 2^3 + \ln 2^5 + ... + \ln 2^{2n+1} : قيمة \quad T_n = 2 \ln (n+1)$$
 نعتبر المجموع
$$T_n = 2 \ln (n+1) \quad T_n = 2 \ln (n+1) \quad T_n = 2 \ln (n+1)$$
 نعتبر المجموع
$$T_n = 2 \ln (n+1) \quad T_n = 2 \ln (n+1) \quad T_n = 2 \ln (n+1)$$

: عتبر في المجال المعادلة هي المجال المعادلة
$$\log x^2 - 2 \log x - 3 = 0$$
 حلول المعادلة هي (2 $S = \left\{10^3 \;\;\right\}$ (ج $S = \left\{10^{-1}; 10^3 \;\;\right\}$ بعتبر في المجال $S = \left\{e^{-1}; e^{-3} \;\;\right\}$

$$v_{_n}=\int\limits_{e^n}^{e^{n+1}}rac{2}{x}\,\,1+\ln x\,\,\,dx$$
: کما یلي \mathbb{N} کما یلی ($v_{_n}$) معرفة علی (3)

: نضع
$$S=v_0+v_1+v_2+...+v_{36}$$
 قيمة $S=1443$ (ب $S=2022$ (ب $S=1444$

$$\begin{cases} u_0 = 5 \\ u_{n+1} = \frac{3u_n + 1}{u_n + 3} \end{cases}$$
 ، u_n عدد طبیعی u_n المتتالیتان العددیتان $u_n = \frac{3u_n + 1}{u_n + 3}$

التمرين الثاني: (05 نقاط)

$$u_{_{0}}=0$$
 ; $u_{_{1}}=1$; $u_{_{n+2}}=\frac{2}{5}u_{_{n+1}}-\frac{1}{25}u_{_{n}}$: ب \mathbb{N} يا المعرفة على المعرفة على المعرفة على المعرفة على $w_{_{n}}=u_{_{n}}\times 5^{n}$ و $v_{_{n}}=u_{_{n+1}}-\frac{1}{5}u_{_{n}}$ ، $u_{_{n}}$ عدد طبيعي عدد طبيعي . $v_{_{n}}=u_{_{n+1}}-\frac{1}{5}u_{_{n}}$, $u_{_{n}}$ هندسية أساسها $u_{_{n}}=u_{_{n}}$ بدلالة $u_{_{n}}=u_{_{n}}$ بدلالة $u_{_{n}}=u_{_{n}}$ بدلالة $u_{_{n}}=u_{_{n}}$ بدلالة $u_{_{n}}=u_{_{n}}$ بدلالة $u_{_{n}}=u_{_{n}}$ بدلالة $u_{_{n}}=u_{_{n}}$

$$0$$
ر انه من أجل كل عدد طبيعي غير معدوم n ، n عدد طبيعي غير معدوم $(3)^{n-1}$

$$\lim_{n o +\infty} u_n$$
 بین أنه من أجل كل عدد طبیعي غیر معدوم n ، n معدوم غیر معدوم (ب

$$S_n = u_1 + u_2 + u_3 + \ldots + u_n$$
 ، n عدد طبيعي (ج

$$0 {<} u_{n+1} \leq rac{5}{3} \Biggl(1 - \left(rac{2}{5}
ight)^n \Biggr)$$
: بین أن

$$T_n = u_0 + 5^1 u_1 + 5^2 u_2 + ... + 5^n u_n$$
: حسب بدلالة n المجموعين n و n بحيث (4 $T_n' = \ln v_0 + \ln v_1 + \ln v_2 + ... + \ln v_n$

التمرين الثالث: (04 نقاط)

يريد تلاميذ قسم مكون من 10 ذكور ، 6 اناث أن يشكلوا لجنة تتألف من 3 أفراد لتمثيلهم في مسابقة دراسية (نفرض أن كل التلاميذ لهم نفس الحظوظ لكي يقع عليهم الاختيار)

"فعناء اللجنة من الجنسيين معا F ، "أعضاء اللجنة من الجنسيين معا" :F ، "أعضاء اللجنة من الجنسيين معا"

- 1) أ) احسب عدد اللجان التي يمكن تشكيلها.
- . F و P(F) احسب P(E) احسب أ
- نفترض أنه من بين تلاميذ القسم يوجد التلميذ x، و أخته التلميذة y والتي لا تريد الانضمام الى اللجنة التي تضم التلميذ x
 - احسب احتمال أن يكون أعضاء اللجنة من الجنسين معا

3) المتغير العشوائي X الذي يرفق بكل لجنة عدد التلميذات المتواجدات بها.

عين قانون الاحتمال Xو احسب E(X) أمله الرياضياتي .

التمرين الرابع: (7 نقاط)

 $g(x) = 1 - (x^2 - 2x + 2)e^{-x}$ الدالة g المعرفة على g

1. أدرس تغيرات الدالة g.

g(x) وميدا g(x)=0 بين أن المعادلة g(x)=0 تقبل حلا وحيدا α حيث α

الدالة f المعرفة على IR بياني المستوى منسوب $f(x)=x-1+(x^2+2)\mathrm{e}^{-x}$ بياني المستوى منسوب إلى المعلم المتعامد $(0,\vec{i},\vec{j})$ (الوحدة (2cm)).

- f. أدرس تغيرات الدالة f
- $f(\alpha) = \alpha(1+2e^{-\alpha})$ بین أن (أ.2
 - $f(\alpha)$ عين حصرا لـ (ب
- \cdot (C_f) بين أن المستقيم (Δ) ذو المعادلة y=x-1 مستقيم مقارب مائل للمنحنى (Δ).
 - (Δ) أدرس وضعية المنحنى (C_f) بالنسبة إلى المستقيم
 - $x_0 = 0$ في النقطة ذات الفاصلة (C_f) في النقطة ذات الفاصلة 4.
 - $[-1;+\infty[$ على المجال (C_f) و (C_f) على المجال (Δ)
- دالة أصلية $F(x) = (ax^2 + bx + c)e^{-x}$ عين الأعداد الحقيقية a وb ، a وc على c وb ، a على c الدالة: a على c على c الدالة: a على c على c الدالة: a على c عل
 - ب) أحسب بدلالة α المستقيمين اللذين المستوي المحدد ب (C_f) و (C_f) و المستقيمين اللذين x=0 و $x=-\alpha$
 - $A(\alpha) = 4e^{2\alpha} + 8e^{\alpha} 16$: بین أن

التمرين الرابع: (7 نقاط)

$$g(x) = x^2 - \frac{1}{x^2} - 4 \ln x$$
 بـ: $g(x) = x^2 - \frac{1}{x^2}$ دالة معرفة على $g(x) = x^2 - \frac{1}{x^2}$

.
$$]0;+\infty[$$
 بين أن الدالة g متزايدة على المجال المجال (1

$$g(x)$$
 أحسب $g(1)$ ثم حدد حسب قيم $g(1)$ أشارة (2

$$f(x) = \frac{1}{4}x^2 + \frac{1}{4x^2} - (\ln x)^2$$
 بـ: $f(x) = \frac{1}{4}x^2 + \frac{1}{4x^2}$ دالة معرفة على $f(x)$

$$\| \overrightarrow{i} \| = \| \overrightarrow{j} \| = 2cm$$
 : تمثیلها البیاني في مستو منسوب إلى معلم متعامد حيث $\left(C_f \right)$

$$\lim_{x \to +\infty} f(x) = +\infty :$$
 نین أن (1

$$\cdot \lim_{x \to 0} f(x)$$
 ثم استنتج $f(x) = f\left(\frac{1}{x}\right)$:]0;+∞[من أجل كل x من أجل كل (2

.
$$f$$
 نغيرات $f'(x) = \frac{g(x)}{2x}$:]0; + ∞ [من أجل كل x من أجل كل y من أبين أنه من أجل كل y من y من y

.]0;1[بين أن الدالة
$$h$$
 المعرفة على]0;+ ∞ [بين أن الدالة h المعرفة على]0;+ ∞ [بين أن الدالة المعرفة على المعرفة على

. بين أن المعادلة
$$f(x)=x$$
 تقبل في المجال $[0,54;0,56]$ حلا وحيدا α ثم فسر النتيجة بيانيا

$$\cdot (C_f)$$
 أنشئ المنحنى (5

.]0;+
$$\infty$$
 على المجال $x\mapsto \ln x$ على المجال (6

ب ـ احسب ب
$$cm^2$$
 مساحة الحيز المستوي المحدد بالمستقيمات التي معادلاتها:

$$x = e$$
 $y = 1$ $y = 0$

الموض وع الثاني

التمرين الأول: (4 نقاط)

عين الاقتراح الصحيح الوحيد من بين الاقتراحات الثلاثة في كل حالة من الحالات التالية مع التبرير:

$$a=\ln\left(\sqrt{n+1}-\sqrt{n}
ight)^{2022}+\ln\left(\sqrt{n+1}+\sqrt{n}
ight)^{2022}$$
: نعتبر من أجل كل عدد طبيعي n العدد الحقيقي (1 $a=n$ (ج $a=0$ (ب $a=2022$ (أ

: و
$$\alpha$$
 تشكل حدودا متعاقبة لمتتالية هندسية فإن ($e^{-2}-e^{-4}$)، $(1-e^{-2})$ و α تشكل حدودا متعاقبة لمتتالية هندسية فإن ($e^{-4}-e^{-6}$) (ب $\alpha=(1-e^{-4})$ (أ

: القيمة المتوسطة للدالة
$$f$$
 المعرفة على \mathbb{R} المعرفة على الدالة f المعرفة على المجال $f(x) = \frac{e^x}{e^x + 1}$ القيمة المتوسطة للدالة f المعرفة على المجال [0;1] هي:

$$m = \ln\left(\frac{e-1}{2}\right)$$
 (ج $m = \ln\sqrt{\frac{e+1}{2}}$ (ب $m = \ln\left(\frac{e+1}{2}\right)$ (أ $m = \ln\left(\frac{e+1}{2}\right)$ عامل $m = \ln\left(\frac{e+1}{2}\right)$ هو: (4 عامل $m = \ln\left(\frac{e+1}{2}\right)$

التمرين الثاني: (5 نقاط)

يحوي كيس على أربع كريات حمراء تحمل الرقم α و ثلاث كريات خضراء تحمل الرقم $\alpha-1$ و كريتين بيضاوين تحملان الرقم α عدد طبيعي غير معدوم . الكريات متماثلة ولا نميز بينها عند اللمس .

نسحب عشوائيا من الكيس ثلاث كريات في آن واحد .

نعتبر الحوادث التالية : A " الحصول على كرية بيضاء على الأكثر " B "الحصول على ثلاث كريات تحمل نفس العدد" و C " الحصول على كريتين بالضبط تحملان الرقم C " C " . " C

- ب) ما هو احتمال الحصول على ثلاث كريات تحمل ألوان العلم الوطنى ؟
- ليكن X المتغير العشوائي الذي يرفق بكل سحب مجموع الأرقام الظاهرة على الكريات الحمراء المسحوبة والذي يأخذ القيمة 0 إذا لم يتم سحب أي كرية حمراء .
 - . القيم الممكنة لـ X هي $\{0,\alpha,2\alpha,3\alpha\}$ ثم عرف قانون احتماله (أ
 - . X الأمل الرياضياتي E(X) للمتغير العشوائي α
 - $|E(X)-1| \le 2$ عين قيمة α التي من أجلها α

التمرين الثالث: (4 نقاط)

$$u_0 > \sqrt{3}$$
 و $u_{n+1} = \frac{1}{2} \left(u_n + \frac{3}{u_n} \right)$:المتتالية (u_n) معرفة على \mathbb{N} بحدها الأول $u_n > 0$

.
$$u_{n+1} - \sqrt{3} = \frac{1}{2u_n} (u_n - \sqrt{3})^2$$
: \mathbb{N} من n کل من أجل کل اثبت أنه من أجل كل n

$$u_n > \sqrt{3}$$
 : \mathbb{N} من n من أجل كل n من أجل بالتراجع أنه من أجل على n

ج. استنتج أن المتتالية (u_n) متقاربة.

$$v_n = \ln\left(\frac{u_n - \sqrt{3}}{u_n + \sqrt{3}}\right)$$
: معرفة على (v_n) معرفة على (2

.
$$u_{n+1} + \sqrt{3} = \frac{1}{2u_n} (u_n + \sqrt{3})^2 : \mathbb{N}$$
 من $n \to \infty$ أ. اثبت أنه من أجل كل n من

 \cdot . n بدلالة v_n بدلالة v_n بدلالة v_n بدلالة v_n بدلالة برهن أن المتتالية و

$$\lim_{n \to +\infty} \mathbf{u}_n$$
 ، ثم احسب، $\lim_{n \to +\infty} \mathbf{v}_n = -\infty$: ج أثبت أن

 $: \mathbb{N}$ نضع : من أجل كل n من (3

$$S_{\scriptscriptstyle n} = \left(\frac{\mathbf{u}_{\scriptscriptstyle 0} - \sqrt{3}}{\mathbf{u}_{\scriptscriptstyle 0} + \sqrt{3}}\right) \times \left(\frac{\mathbf{u}_{\scriptscriptstyle 1} - \sqrt{3}}{\mathbf{u}_{\scriptscriptstyle 1} + \sqrt{3}}\right) \times \left(\frac{\mathbf{u}_{\scriptscriptstyle 2} - \sqrt{3}}{\mathbf{u}_{\scriptscriptstyle 2} + \sqrt{3}}\right) \times \ldots \times \left(\frac{\mathbf{u}_{\scriptscriptstyle n} - \sqrt{3}}{\mathbf{u}_{\scriptscriptstyle n} + \sqrt{3}}\right)$$

$$\left[2^{n+1}-1
ight]\!\ln\!\left[rac{u_0^{}-\sqrt{3}}{u_0^{}+\sqrt{3}}
ight]$$
 $S_n=e$: $\mathbb N$ من n کل n من أجل کل n من أجل کا n

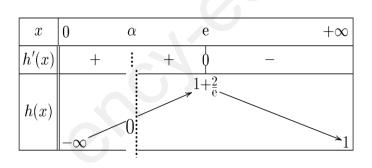
التمرين الرابع: (7 نقاط)

$$h(x) = 1 + \frac{2\ln x}{x}$$
 الدالة h معرفة على]0;+∞[ب. [الدالة h

وبجدول تغيراتها المقابل:

بين أن المعادلة
$$h(x)=0$$
 تقبل حلا وحيدا (3 $0.7 < \alpha < 0.8$ يحقق: α

$$h(x)$$
 استنتج حسب قیم x اشاره (4



$$g(x) = 1 + \frac{\ln x}{x}$$
 الدالة g معرفة على $g(x) = 1 + \frac{\ln x}{x}$ بـ: (II

$$(o;ec{i};ec{j})$$
 تمثیلها البیاني في مستو منسوب إلى معلم متعامد متجانس (C_s)

$$g'(x)$$
 من أجل كل x من $g'(x)$ من أجل كل x من $g'(x)$ ب. [7] ب. استنتج اتجاه تغير الدالة g

$$\lim_{x \to \infty} g(x)$$
 ثم $\lim_{x \to \infty} g(x)$ أ. احسب (8)

ب. فسر النتيجتين بيانيا .

ج) شكل جدول تغيرات g .

$$f(x) = g(x) + \left(\frac{\ln x}{x}\right)^2$$
الدالة $f(x) = g(x) + \left(\frac{\ln x}{x}\right)^2$ ب إناية الدالة والدالة الدالة الدالة

. تمثيلها البياني في مستو منسوب إلى المعلم السابق
$$\left(C_{f}
ight)$$

.
$$f'(x) = g'(x) \times h(x)$$
 :]0;+∞[من أجل كل x من أجل أ_ (1 . $f'(x) = g'(x) \times h(x)$. $f'(x) = g'(x) \times h(x)$.

$$\lim_{x \to \infty} f(x) = +\infty$$
 ثم احسب $\lim_{x \to +\infty} f(x) = +\infty$ أ. يين أن: $\lim_{x \to +\infty} f(x) = +\infty$

ب. فسر النتيجتين بيانيا

$$f$$
 ج. برهن أن: $f(\alpha) = \frac{3}{4}$ ، شكل جدول تغيرات

. معادلة له معادلة له
$$(C_f)$$
 و (C_g) : أ. بين أن (C_g) و و (C_g)

ب. احسب
$$\lim_{x\to 0} [f(x)-g(x)]$$
 ثم فسر بیانیا هذه النتیجة.

$$\cdot$$
 $\left(C_{_{g}}
ight)$ بالنسبة ج. ادرس وضعية $\left(C_{_{f}}
ight)$

لنشئ بدقة المماس (T) ثم (C_{g}) و (C_{g}) في نفس المعلم السابق.